최신정리 Ver.1.1.1
게시글 주소: https://orbi.kr/00072481830
불완전성 정리
제1정리. 페아노 공리계를 포함하는 어떠한 공리계도 무모순인 동시에 완전할 수 없다. 즉 자연수 체계를 포함하는 어떤 체계가 무모순이라면, 그 체계에서는 참이면서도 증명할 수 없는 명제가 적어도 하나 이상 존재한다.
제2정리. 페아노 공리계가 포함된 어떠한 공리계가 무모순일 경우, 그 공리계로부터 그 공리계 자신의 무모순성을 도출할 수 없다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제1정리 반박
명제논리는 완전함
명제논리(논리게이트,컴퓨터)를 이용해 제1정리에서 말하는 페아노공리계를 포함하는 산술체계를 구현가능
명제논리로 산술체계를 나타낼수 있음
따라서 산술체계는 완전함.
무모순과 참은 동치다.
제1정리의 내용은 "산술 체계가 무모순이면 산술 체계는 불완전하다"고 말한다
이말은 "산술 체계가 참이면 산술 체계는 불완전하다" 가 된다
하지만 위에서 산술체계가 완전함을 밝혔음
그말은 "산술 체계가 참이면 산술 체계는 불완전하다"가 거짓이라는 얘기임
부정이 참이기 때문에
"산술체계가 참이고 and 산술체계는 완전하다"
가 참
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제2정리 반박
무모순은 참과 동치
완전성에 의해 참은 증명가능
따라서 무모순을 증명가능
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
괴델의 문제
G="G는 증명불가능"
괴델은 "G가 증명불가능"함을 증명함
그런데 이는 G를 증명한것
G의 내용과 모순
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
공리의 실체
1. (A가 거짓->모순)->(A의 증명있음)
2. (A의 증명없음)->(A가 거짓 and 무모순)
3. (A는 공리)->(A의 증명없음)
4. (A는 공리)->(A가 거짓 and 무모순)
무모순=참
5. (A는 공리)->(A가 거짓)
6. (A가 참)->(A는 공리아님)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
완전성 증명
1. (Not A->모순)->(A의 증명있음)
2. (Not A->모순)<->A
3. A->(A의 증명있음)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
리버스 너췌먹이냐
-
ㅇㅈ 7 2
오늘 아이쇼핑한 시계 인증 하나 골라주셈
-
전 오자임 8 2
남자도 여자도 아닌 오자임 그래서 남르비도 여르비도 아닌 오르비임
-
캐리캐리 9 0
역시 의대생이 롤도 잘해 난 롤도 그저그렇고 수학은 못하는데
-
찌익...선....X.....질펀
-
주변에서 슬슬 대학 고민이랑 삶의 방향 고민을 깊게 하기 시작하는구나... 나도.....
-
아 사탐런해야되나 4 1
화학 42점이 뜨니까 되게 멘탈 갈리네 이거 수능때까지 올릴수있나…. 지능이 모자란거같은데
-
수학 n제 풀 때 4 0
/) /) *´ㅅ`) 해설 가지고 다들 어띃게 공부히시나요…
-
기하런 고민되는데 8 0
고딩 때 방학 동안 학교에서 기하 선생님 초청해서 한 번 해봤었고 그 때 이후로...