최신정리 Ver.1.1.1
게시글 주소: https://orbi.kr/00072481830
불완전성 정리
제1정리. 페아노 공리계를 포함하는 어떠한 공리계도 무모순인 동시에 완전할 수 없다. 즉 자연수 체계를 포함하는 어떤 체계가 무모순이라면, 그 체계에서는 참이면서도 증명할 수 없는 명제가 적어도 하나 이상 존재한다.
제2정리. 페아노 공리계가 포함된 어떠한 공리계가 무모순일 경우, 그 공리계로부터 그 공리계 자신의 무모순성을 도출할 수 없다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제1정리 반박
명제논리는 완전함
명제논리(논리게이트,컴퓨터)를 이용해 제1정리에서 말하는 페아노공리계를 포함하는 산술체계를 구현가능
명제논리로 산술체계를 나타낼수 있음
따라서 산술체계는 완전함.
무모순과 참은 동치다.
제1정리의 내용은 "산술 체계가 무모순이면 산술 체계는 불완전하다"고 말한다
이말은 "산술 체계가 참이면 산술 체계는 불완전하다" 가 된다
하지만 위에서 산술체계가 완전함을 밝혔음
그말은 "산술 체계가 참이면 산술 체계는 불완전하다"가 거짓이라는 얘기임
부정이 참이기 때문에
"산술체계가 참이고 and 산술체계는 완전하다"
가 참
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제2정리 반박
무모순은 참과 동치
완전성에 의해 참은 증명가능
따라서 무모순을 증명가능
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
괴델의 문제
G="G는 증명불가능"
괴델은 "G가 증명불가능"함을 증명함
그런데 이는 G를 증명한것
G의 내용과 모순
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
공리의 실체
1. (A가 거짓->모순)->(A의 증명있음)
2. (A의 증명없음)->(A가 거짓 and 무모순)
3. (A는 공리)->(A의 증명없음)
4. (A는 공리)->(A가 거짓 and 무모순)
무모순=참
5. (A는 공리)->(A가 거짓)
6. (A가 참)->(A는 공리아님)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
완전성 증명
1. (Not A->모순)->(A의 증명있음)
2. (Not A->모순)<->A
3. A->(A의 증명있음)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
회사가 달라서 여쭤봄 컴맹이라 양해좀
-
강기원 시즌2 6
장재원t 시즌2부터 듣고 있었는데 저랑 좀 안 맞는 느낌이라 지금 뒤늦게 강기원t...
-
봄바르딜로 크로코딜로 이거 ㅈㄴ ㅂㅅ 같다고 생각했는데 13
계속 보다 보니까 재밌노 ㅋㅋㅋㅋ 에라이
-
D-8 7
30문제 남았다 오후에 실모할지 복습부터할지 봐야겠군
-
그러합니다...
-
여백에 회음후 열전 만년필로 필사했음 불려가는거 아니겠지 ㅋㅋ..
-
럭키 77 0
https://orbi.kr/00072740989/ 좋아요 77 캬 좀 더 글을...
-
어디갈까요 성적 최우선 다녀보신분들 장단점도 기술해주심 갬사하겠습니다..!
-
친척형이 준 국어의기술책인데, 친척형은 오래전에 수능봤어요 전 언어와매체 선택자인데...
-
아오오오오오오오 5
오니
-
모교 6모정원 60명이면 모집개시당일 마감일까요?? 0
그렇겠죠...?? 학교 특성상 학교응시n수생 60명 훨씬 넘을 것 같은데...
-
지금 페이스면 6모전에 딱 개념기출 1회독 할꺼같은데 속도 올릴까요?
-
현역 공부 효율 0
3모보고 멘탈 나간 이후로 공부가 잘 안되고,,, 원래 이정도로 수학이 안풀리진...
-
같은 문제라도 풀이가 ㄹㅇ 눈에 띄게 좋아졋군 상당히 좋군
-
난이도 어떤거같나요? 전반적으로 드릴345보단 쉬운거같은데
-
둗옹
-
독서 고1 기출 3
손실 보상 청구권, 실어증 얘네 풀어 보셨나요 하... 정보도 많고 용어도...
-
휴강인지 모르고 학교 갔네 카톡에도 동기가 톡 했는데 못 보고 도서관에 가서 중간 준비나 할까
-
요즘 독감이 유행이래요
-
운문은 나름 치고 현대소설까지는 어떻게 어떻게 하는데 고전소설을 진짜 못 해 먹겠음...
-
사문 개념강의 다들었는데 다음 커리인 임팩트를 하는게 좋을까요 아니면 그냥 기출푸는게 좋을까요?
-
열 바로 내림 근데 열은 내려도 아직 힘드네
-
재수로 약대에 들어간 사람입니다. 현재 2학년인데 약대를 다닐수록 한번더...
-
깨달은거 3
학교서 눈마주치면 어색하게 지나쳐야되는 사람들이 꽤 잇다는거 학교생활하지도 않았는데...
-
뭐지진짜
-
생1이 탐구 17개 과목중에 3등급 맞기 제일 쉬움 그 이상은 근데 존나 어려움...
-
평상시에 속으로 혼잣말 많이하고 뭐 생각할때도 속으로 혼잣말 많이하고 공부할때도...
-
시모노세키 끝 11
이제 히로시마로
-
0.999...는 1이 아니다 135
0.999... = lim(x->inf),(1-1/10^x)...
-
대 재 호
-
ㅈ됨...
-
부엉이 갔냐? 3
굿다이노
-
2025학년도 단국대(천안) 입시결과(수시, 정시_의예, 치의예, 약학) 0
2025학년도 단국대(천안) 입시결과(수시, .. : 네이버블로그
-
지수법칙 외우라고 하는게 맞는거죠?
-
0이상 1이하의 선분에 존재하는 실수들은 선분을 이루는 점이라고 할수있음 그런데....
-
ㅠㅠ
-
또 줄었는데
-
0이상 1이하의 실수는 무한히 많음 0이상 1이하의 "선분"은 무한히 많은 점들로...
-
신촌 숨겨진맛집 11
?
-
짐 뺐네.. 정들었었는데 ㅜㅜ
-
3교시 수행 점심시간 축구
-
내가 제안서 초고까지 작성했는데ㅡㅡ 편안해지셨음 좋겠네요
-
그나마 사람글씨같다
-
독감 입갤 2
B형 독감이랍니다
-
영어노베 2
고삼이고 사등급 노베인데 대성 션티 커리 따라가고 있는데 단어를 너무 모르는 거...
-
헐...
-
이거 뭐냐 0