모 커뮤니티에 작년 6월에 올린 6평 공통 객관식 리뷰
게시글 주소: https://orbi.kr/00072449709
1~7번까지는 무난
8번: 두번째식 양변 16으로 나누기 r<0
9번: 기출복붙
10번: (나)는 결국 이등변 그러면 삼각형 변길이 비가 나옴
11번: 무난
12번: 무엇을 변수로 두냐의 문제인데
결국 취향문제긴한데 나는 변수개수를 늘리더라도 식 부피를 줄이는걸 선호함
시험장에서 진짜 급하면 답이 결국 1.5CDCA니까
역추적 시도해서라도 풀어야함.
요즘 실모는 10~13에서 흔드는거 자주나와서 이미 훈련했어야 했음
(2023 6평 10번/2024 6평 12, 13)
13번: 원래는 9번문제 유형
14번: 우선 n이 n<15이므로 대부분에 되고 안되는게 소수임을 인지
-n²+10n+75>75-kn>0
n<10+k and n<75/k
일단 자연수가 12개이므로
k=3~6 대입
k=3-> ok
k=4-> 13개라 안됨
k=5-> 14개라 안됨
k->6->ok
끝
정수 and 부등식은 값의 상한과 하한을 감잡고 가야함
15.
k가 0이상 조건줌->ㄱㅅ
g가 미가이므로 f(k)=k, f'(k)=2
f(x)=(x-k)³+a(x-k)²+2(x-k)+k
어떤 꼴이든 쓸수 있다 생각하고 일단 keep
(나)의 첫번째 식의 좌변 다항식의 도함수는
[0, 1]에서 0이고 (1, inf)에서는 g(t)와 부호 동일
(-inf, 0)에서는 g(t)와 부호 동일하므로 음수
따라서 g(t)t(t-1)을 1에서 양수 x(x>1)까지 적분했을 때 0이상이므로 증가함수 g에 대해 이걸 만족하려면 k<=2
두번째식을 주물러보면
좌변 다항식의 도함수는 (-2, 1)를 제외한 구간에서는 항상 0
(-2, 1)에서는 g(t)와 부호 동일
k>=2이므로 g(t)는 (-2, 1)에서 감소함
결국 k>=2이면 됨 따라서 k=2
g가 증가하므로
3(x-k)²+2a(x-k)+2의 (k, inf)에서의 최솟값이 0이상
미적분응시자는 여기서 생각을 바꿀 수 있음
3x²+2ax+2의 (0, inf)에서의 최솟값이 0 이상이면 됨(2018 9평 가형 30번)
a>=0이면 항상 성립
a<0이면 a=-루트6이상
g(k+1)=3+k+a이므로 최솟값은 5-루트6
공통 객관식만 살펴보면 전체적으로 포장지만 요란하지 기출의 내용을 잘 담은 소위 말해서 '족보대로 낸 시험입니다.'
문제를 잘 읽고 출제자의 의도를 캐치해서 구조를 단순화하고 필요한 계산만 수행하는 것을 연습해야합니다.
이제 점점 시간이 부족해질겁니다.
현역 n수 모두 조금만 나태해지면 앞으로 수능수학은 가혹하게 점수를 깎아갈겁니다.
공통 주관식/ 선택에 대한 썰도 추후에 남기겠습니다
저때 댓글 1개 달려서 추후에 남기겠다는 약속이 있었으나 썰 안풀었음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
편하게 다 맞으면 뭐 풀어야 하나요 고1인데 고쟁이 올고 절대등급 메가N제...
-
오늘은 2
새벽 3시나 4시 쯤에 자야지
-
형 옷 입었다. 2
일진이 카톡으로 빵 심부름 시켜서 빵 사러 나간다... 먹고살기 힘드농
-
아니 나 쿠팡 가니까 귀신같이 ㅇㅈ메타 도는 거 먼데 3
ㅠㅠㅠㅠ 억울해 진짜
-
나도 설레고싶다 1
-
찐 노베들을 위한 글 12
1. 기출 실모 n제 이런 것들 진행하는 순서는 어떻게 되나요? 보통 개념 강의를...
-
마 13
잘자라
-
수험생 카페인 4
매일 박카스 하나씩 먹는중인데 요정도는 괜찮겠죠 잠은 5~6 시간 정도 잡니다
-
배고픈데 야식추천좀 13
냉장고에 편의점 훈제앞다리 사놨는데 동생이 먹었더라..
-
썸타보고싶다 0
라는 이상한 말은 하면 안됨
-
현역 국어 4등급 강기분 공부법 제발 도와주세요.. 1
제목처럼 강기분 공부를 하고 있습니다 강기분을 어떻게 공부하냐면 먼저 시간 재고...
-
ㅇㅈ 못하겠네
-
유급하면 되나요? 어떻게 되는거죠
-
심사의 익명성을 지키면서 다른 문제들을 예방하기 위해 좋아요 점수를 없애고...
-
수험생 커뮤에 지얼굴 까는 문화가 있는게 이해는 안되지만 뭐.. 고유한 전통이라...
-
수12확통 동시에 진도 안나가고 수1-수2-확통 혹은 수1&수2-확통 이런식으로 해도 괜찮나여?
-
아 똥마려워 2
어디서 싸야해
-
손 ㅇㅈ 5
뽀큐 펑
-
매번 평균 낮추는데도 어디서 자꾸 튀어나오네
-
존예라고 말해준사람이 있었다 ㅎㅎㅎ 말이라도 ㄱㅅ합니다 이제자러감
-
안녕하세요 3
뉴비에요
-
으흐흐 내일은 집에서 이불덮고 애니보면서 수학할거임
-
ㅇㅈ 9
그건 휘어진 나의 못생긴 손이라는 거야
-
길고 길었던 오르비 생활에 조만간 마침표를...
-
ㅇㅈ 3
에도 없다! 연세대학교 경영대학
-
헉 ㅇㅈ메타다 2
(대충 ㅇㅈ인척)
-
중위권 여러분들이 심사위원에 지원해주셨으면 합니다 15
상위권만 이해하고 와 좋은내용이네요 하는 칼럼은 무의미하지 않을까요? 물론 다른...
-
메타끝낫나 9
이제자러가야지
-
지금 빵 사러 가는게 맞는거냐?
-
뻥이야 미안해
-
민주 대선 경선 ‘어대명’? 범진보, 오픈프라이머리 재차 제안 2
- 비명 김두관 7일 출마선언 - 김경수·전재수 등도 하마평 더불어민주당은 조기...
-
이거 우회하려다가 너무 다양한 문제가 생기는듯
-
어떻게해야할까.. 슬프다 ㅠ
-
침구사 0
Asmr 좋아해서 일본 침구사 관련 영상을 많이 봤는데 너무 재밌어보인다 맨날...
-
잘생겨지고 싶다 8
공대 애들 왤케 잘생김
-
비밀은 지켜드립니다 13
-
리젠 ㅈ박은 것보다야
-
내가 거의 유일한듯
-
힘들다 4
허리가 아프고 몸이 땡기고 ..
-
고급 생물학 인가요 아니 그럼 일반 화학이랑 일반 생물학은 어디감??
-
그러면 인증 칼럼 1. 인증을 하지 마라 2. 1번을 꼭 지켜라
묻히면 글 쓸 동력이 사라지죠
여긴 2개니까 썰 풀어주시죠
념글은 가야 썰을 더 풀죠 2개로는 쇼당이 안붙음

일단 전 누름이정도 고퀄글이 왜 묻혔는지 의아하네요