회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00072442162
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ 심심한 고닉들이 꼭 풀어줌
-
아이디어 수강후 기생집 4점까지 일단 다 한번씩은 풀어봤습니다. 아 물론 점프문항...
-
강매당한 이투스 모의고사 환불 신청하는 게 나을까요? 2
제가 더프, 이투스 모의고사 2개를 한 달에 2번 볼 것 같은데 지금 이 시기, 제...
-
실모 뭐해야함 0
학교에서 D.Archive,constant, D.Fine, D. Fine...
-
이제 본인 영역 아니어서 답 못달아줬다를 넘어서 그냥 뉴비 공부 질문글에 관심이...
-
국어십련 3
항상 똑같아
-
시대인재 물리 0
시대인재라이브로 현정훈 듣는데 강좌만 뜨는데 볼텍스랑 브릿지는 어디서 살 수 있나요?
-
리센느인지 뭔지 3
광고 ㅈㄴ 뜨네
-
사실 환급때문에 그냥 ebs 답 보고 넣음 ㅎ
-
주변 학원들 전화해보니 다 마감됐다고해서 어쩔수없이 집에서보거나 기차타고...
-
언급이 아에 없네
-
아오 환율시치 2
아.
-
들어올때마다 바뀌어 있음;,
-
확통 미적 기하
-
국어 고정1이면 3
정법 지금 시작해도 만점 나와요?사탐에 감이 아예 없음 누가 국어 잘하면 정법하라길래...
-
국어 양 0
국어에서 양을 늘리라는게 양치기를 하라는건가요? 그럼 기출가지고만 양치길ㄹ...
-
1. 집근처 잇올 70만원정도 화장실 맘대로 못가는게 좀 에바같음.. 6.9모 따로...
-
후반 회차는 개어려워 ㅠ
-
[유튜브 23만뷰 돌파!!!] 수능 영어 풀어주는 AI 프로그램 개발? [노병훈 영어강사, Roy] 수능 CDI 풀이법 프로그램, 로블정음 영어독해법 0
이 칼럼으로 영어로 고민하고 힘들어하는, 많은 학생분들에게 새로운 인사이트와 희망을...
-
칼럼 뭐쓰지 0
소년애 지문 뜯어보기 이런거 할까 아님 강화약화의 일반적해법이나
-
국어 자습용ㅊㅊ 0
새기분 듣는중인데ㅜ 학교가는날엔 인강듣기 좀 버겁기도하고 혼자서 생각하고 풀만한...
-
정승제. 개념의 신. 공수2. 중 명제파트만. 보려고 하는데요 (선행용으로) 문제집...
-
진짜 마음이 싱숭생숭하네.... 아효......
-
22도 23도네 2
다다음주면 30도될듯
-
늦게 찾아온 만큼.... 3월말에 잠깐 여름 찍먹하고 다시 겨울이었다가 이제야 계절이 정상화된 느낌
-
버스로는 25분 정도 걸리는 거리인데 정류장이 제 집에서 10분 정도 걸리는 거리에...
-
.
-
13 14 21 28 29 계속 틀리는데 뭘 해야좋을까요 21 29은 그렇다 처도...
-
정답률 파악을 위해 문항마다 투표 올립니다. +국어 해설 작성에 능한 야인을 찾고자...
-
시발 존나 싼티나잖아~
-
”수학 익힘책“
-
수능대비 찐입문n제라고 봐도 손색이 없음 개념바로 배운 상태에서 유형+직관적인...
-
1. 사설모나 기출 등을 풀어본다. 2. 끌리는 포인트를 찾는다. 3. 그...
-
우리가 처음만났던 그때의 향기 그대로~~
-
그냥 공부를 안할 가능성이 높음 하루에 샤프를 드는 빈도가 적을지도
-
남정네들이랑 꽃 잠깐 보고 다시 들어와서 우렀어
-
참가비 걷기
-
다들 개념 암기할때 14
1. 손으로 쓰면서 외운다. 2. 눈으로 읽어보면서 외운다. 3. 밑줄 그으면서...
-
일단 말도 안되는 굇수들이 수학 문제를 촤라락 풀고 자랑질을 할 것 이다 이때 너는...
-
완벽하게 풀고 설명할 수 있다? 꽉 찬 2등급은 나올듯
-
상품 더 뿌려야겠네요 12
의문의 후원릴레이로 인해 많은 참가 부탁드립니다 받은 덕코는 다 쓰는 게 도리겠죠
-
뭐 형광펜 쳐라 밑줄 쳐라 적어라 이런걸 딱 어디부터 어디까지 쳐라 아니면 어디다...
-
육진방언 글로 3만 덕 넘게 벎 캬캬
-
왤케 웃기지ㅋㅋㅋㅋ
-
2025학년도 한림대 입시결과(수시, 정시_의학과 포함) 0
2025학년도 한림대 입시결과(수시, 정시_의.. : 네이버블로그
-
모의고사는 어케 되는거임? 연기?
-
젖지 대머리에 빠져서 할수가없어
-
1. 투자할 돈을 모은다. 2. 1을 절대 주식에 넣지 않는다. 3. 2를 반드시...
노란색 부분 맞음요
limx->-1- g(x) = 0-
-1- ->0-라서 1
아 0 맞음
0-가 되야할거같아요
0- 라 적은거 아닌가
아 잘못봤군
아 0이 맞네요 절댓값 있어서
아아 g(-x)에 x -> 1+ 를 넣으면 -1-가 되어서 제가 대칭으로 그린 그래프에서 보면 g(-x)가 0+가 되니까 마지막으론 x->0+ f(x) 아닌가요??
아 다시보니 g가 절댓값 함수이기 때문에 g의 좌극한은 0+ 0-가 아니라 그냥 함숫값 0이네요
f(0)으로 가야해요
이러면 안 되나요??
아 저거는 f(x)가 아니라 f(-x)의 그래프인데
학생분께서 f(-1-), 즉 f(x)의 x에 -1-를 대입해야하는데
f(-x)의 x에 -1-를 대입해서 0이 아닌 0+가 나온것 같아요
g(-x)를 만들면 x에 -x를 대입해서
f(-x) + lf(-x)l 로 계산하면 이렇지 않나요..?
각각 1+ 대입해서 더했는데..
그러니까
1+ 대입->g(x)에 -1- 대입한거랑 같다
이거죠
아…! ㅜㅜ
동그라미친 부분은 x<-1에서 g=0이니까 lim(x->0)(f(x))가 아니라 그냥 f(0)
해설도 개판으로 풀어놨네
선수맞나
해설집 풀이인가요??
t->0이랑 t=0은 다르죠
해설은 t->0이라고 해놓음
앗 해설집 틀린건가요??
네
예를 들어서
f(x)=|x|/x (x=/=0)
0 (x=0)
이렇게두면
g(x)=0
g(x)=x
g(x)=|x|
g(x)=x+|x|
일때 f(g) as x->0 극한값 싹다다름
ㅜㅜㅜㅜ
혹시 이렇게 생각하면 Babo인가요??
babo는 아니고 bamboo(범부)
f(-x)에서 x->-1-를 보고있는건가요
이게뭐지
마지막에 2번을 f(x) 그래프에 넣어서 1이 나오던데요..
빨간색 화살표는 뭔가요
f(-x)에서 x->(-1)-를 보고있는건가요
근데 저희가 넣는 건 -1+이 아니라 1+ 아닌가요
네.. 그건 1번에서 제가 생각한 이유가
g(-x)는 g(x)에 -x 넣으니까
g(-x) = f(-x) + I f(-x) I 라 생각했고
그래서 1+ 를 대입 해서 각각 더하자 생각 했어요
f(-1-) + I f(-1-) I 각 값을 더하자 이렇게요..
그래서 왼쪽 그래프에서 x=-1- 일 때를 봤는데
0+ 길래 겉함수 f(x)에서 x-> 0+ 로 보내면 문제의 오른쪽 그래프에서 상황을 보고 1이렇게 나왔어요..
그러면 f(-x)+|f(-x)|에서 x->1+의 극한을 취해야죠 x->(-1)-가 아니라...?
1+ 를 넣으니까
(-x)에 넣으면 -1-가 되서 그래프에서 -1- 쪽 봤는데 아.. 설마 왼쪽 그래프에서 1+를 봐야하나요??
네
f(-x)+|f(-x)|에 x=-1.1을 대입하면 f(1.1)+|f(1.1)|임 f(-1.1)+|f(-1.1)|이 아니라
QnA에 가보니까 오류 인정하네요
근데 왜 정오표에는 없지
ㅜㅜ 이런 쉬운 문제를 너무 어려워 하네요..
위에 보시면 수학 잘하는 분들도 가끔 실수하는 부분이라 헷갈리는 부분이긴 한데 그래서 복습 엄청 열심히 해야하는 부분이죠
복습 열심히 하겠습니다..!
정오표 자체가 없지 않음?
학습 자료실에 일부 강의교안, 빠답, 정오표 있어요
ot인가 1강 첨부 파일에 있어요
아직 양수살리기 함수 안배우셨나요
그게 뭐죠..? ㅠㅠ
수1 179p에 있는데 앞으로 자주 나올 예정이라 미리 봐두세요
감사합니다 ㅜㅜ