회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00072442162
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
의대,약대,서울대 선배들이 직접 본인의 경험담을 공유해주는 무료 세미나가 있어...
-
ㅇㅂㄱ 3
ㅎㅇ
-
디아카이브 국어 0
이거 등급컷 널널한 편이죠?
-
하.. 걍 존나 부자가되어야겠노 사실 평생 놀고먹을 돈있으면 우리나라 망하든말든...
-
왜 자석끼린 밀어내기도 하는데 철판은 당기기만하죠? 6
왜져ㅛ??
-
김범준 필노 13
진짜 당황스러울 정도의 초고퀄 제본이라 난 모든 화가 풀렸다. 권당 2만원 받아도...
-
보통 올해 수특에서 내나요? 아니면 작년도 수특에서 내나요?
-
안녕하세요. 이번에 정석민을 듣기로 했습니다... 정석민 들으시는 분들은 강의...
-
백악관, 尹 파면에 "한국 민주적 제도·헌재 결정 존중"(종합2보) 5
[워싱턴=뉴시스] 이윤희 특파원 = 도널드 트럼프 미국 행정부가 4일(현지 시간)...
-
어쩌라고 ㅗ
-
저는 막연히 한계를 경험해보고 싶다는 마음으로 공부를 하고 있는데요, 문득 구체적인...
-
얼버기 2
부지런행
-
어제 에지간히 피곤했는갑네
-
ㅎㅎ 잠 깼다 2
기분 좋아졌어 아 나 진짜 대가리 꽃밭인듯
-
인권 보장 부탁.
-
계속 개소리 짓거리며 내말이 맞다고 우기는데 자고일어나면 그게 왜틀렸는지 알게됨..
-
작년 재작년에 더프쳤는데 거의 겹치려나요 풀지말지 고민인데
-
수학 N제 추천 2
죽기전에 이건 풀어봐라 하는거 있나요? 지인선 다하면 드릴할지 이해원할지 고민인데
-
발상노트 쓰는 데 시간이 너무 오래 걸려요 문제 이해하지 말고 그냥 풀이랑 예시만...
-
하..
-
여기에 수업까지 끼면 힘들어서 우울증 올 것 같은데
-
지각이다.. 1
(진짜 지각임)
-
그러하다
-
세상에 없는거 같아요 으아아ㅏㅏㅏㄱ 그래도 올해 성불해야되니까 갔다올게요
-
왜 비오냐 2
우산없는데
-
계속 숏치라는 하늘의 계시인듯 양봉마다 숏 때릴예정
-
내신 수업이지 ㅋㅋㅋㅋ
-
잘생겼는지 어떻게 확인하냐
-
농어촌 1
이번에 만약 의대 감축된다면 농어촌한테도 영향이 큰가요? 의대증원일때도...
-
ㅇㅂㄱ 1
머리 깨질거 같아요
-
얼버기 0
ㅇ
-
3년전에 활동하던 곳인데 그때나 지금이나 내 사상은 거기서 거기인듯 중딩때부터...
-
힘들어죽겠다...
-
새르비 개쩌네 1
저걸못봄..
-
시민1:헌재 불질러버려 #~# 시민2:이게 말이 되냐고오오오!!!! 전광훈:아니...
-
1. ∀x (E(x)) (모든 것이 존재한다) 1의 부정은 2. ∃x (¬E(x))...
-
션티하고 이영수 중에서 누가 괜찮을까요? 이명학은 제 수준에서 보기엔 힘들것 같아서 제외합니다.
-
질문 받음
-
말그대로 입니다 반수 하려는데 선택과목을 무엇을 하면 좋을까요? 공대 지망이고...
-
아침에 올리겠음
-
고양이 만지고싶다 13
그냥 마구만지기
-
D-222 0
영어단어 영단어장 day 2 복습 수특 3강 복습 그래도 꽤 많이 반복해 온 탓인지...
-
섹스 4
섹스
-
일본: 도쿄 외각 스피커 ㅈ되는 lp바에서 온더락 홀짝홀짝 플러브,...
-
준킬러를 딱 풀기 직전?느낌의 실력인데 인강을 듣고싶습니다.. 정병호t 프메랑...
-
덕코가질사람 31
손들어봐
-
술 개취했음 3
휘청휘청대며 걷는중
-
뭐 공개할까요 13
치명적인 것이 아니면 공개함 댓글 선착 1위의 의견대로
노란색 부분 맞음요
limx->-1- g(x) = 0-
-1- ->0-라서 1
아 0 맞음
0-가 되야할거같아요
0- 라 적은거 아닌가
아 잘못봤군
아 0이 맞네요 절댓값 있어서
아아 g(-x)에 x -> 1+ 를 넣으면 -1-가 되어서 제가 대칭으로 그린 그래프에서 보면 g(-x)가 0+가 되니까 마지막으론 x->0+ f(x) 아닌가요??
아 다시보니 g가 절댓값 함수이기 때문에 g의 좌극한은 0+ 0-가 아니라 그냥 함숫값 0이네요
f(0)으로 가야해요
이러면 안 되나요??
아 저거는 f(x)가 아니라 f(-x)의 그래프인데
학생분께서 f(-1-), 즉 f(x)의 x에 -1-를 대입해야하는데
f(-x)의 x에 -1-를 대입해서 0이 아닌 0+가 나온것 같아요
g(-x)를 만들면 x에 -x를 대입해서
f(-x) + lf(-x)l 로 계산하면 이렇지 않나요..?
각각 1+ 대입해서 더했는데..
그러니까
1+ 대입->g(x)에 -1- 대입한거랑 같다
이거죠
아…! ㅜㅜ
동그라미친 부분은 x<-1에서 g=0이니까 lim(x->0)(f(x))가 아니라 그냥 f(0)
해설도 개판으로 풀어놨네
선수맞나
해설집 풀이인가요??
t->0이랑 t=0은 다르죠
해설은 t->0이라고 해놓음
앗 해설집 틀린건가요??
네
예를 들어서
f(x)=|x|/x (x=/=0)
0 (x=0)
이렇게두면
g(x)=0
g(x)=x
g(x)=|x|
g(x)=x+|x|
일때 f(g) as x->0 극한값 싹다다름
ㅜㅜㅜㅜ
혹시 이렇게 생각하면 Babo인가요??
babo는 아니고 bamboo(범부)
f(-x)에서 x->-1-를 보고있는건가요
이게뭐지
마지막에 2번을 f(x) 그래프에 넣어서 1이 나오던데요..
빨간색 화살표는 뭔가요
f(-x)에서 x->(-1)-를 보고있는건가요
근데 저희가 넣는 건 -1+이 아니라 1+ 아닌가요
네.. 그건 1번에서 제가 생각한 이유가
g(-x)는 g(x)에 -x 넣으니까
g(-x) = f(-x) + I f(-x) I 라 생각했고
그래서 1+ 를 대입 해서 각각 더하자 생각 했어요
f(-1-) + I f(-1-) I 각 값을 더하자 이렇게요..
그래서 왼쪽 그래프에서 x=-1- 일 때를 봤는데
0+ 길래 겉함수 f(x)에서 x-> 0+ 로 보내면 문제의 오른쪽 그래프에서 상황을 보고 1이렇게 나왔어요..
그러면 f(-x)+|f(-x)|에서 x->1+의 극한을 취해야죠 x->(-1)-가 아니라...?
1+ 를 넣으니까
(-x)에 넣으면 -1-가 되서 그래프에서 -1- 쪽 봤는데 아.. 설마 왼쪽 그래프에서 1+를 봐야하나요??
네
f(-x)+|f(-x)|에 x=-1.1을 대입하면 f(1.1)+|f(1.1)|임 f(-1.1)+|f(-1.1)|이 아니라
QnA에 가보니까 오류 인정하네요
근데 왜 정오표에는 없지
ㅜㅜ 이런 쉬운 문제를 너무 어려워 하네요..
위에 보시면 수학 잘하는 분들도 가끔 실수하는 부분이라 헷갈리는 부분이긴 한데 그래서 복습 엄청 열심히 해야하는 부분이죠
복습 열심히 하겠습니다..!
정오표 자체가 없지 않음?
학습 자료실에 일부 강의교안, 빠답, 정오표 있어요
ot인가 1강 첨부 파일에 있어요
아직 양수살리기 함수 안배우셨나요
그게 뭐죠..? ㅠㅠ
수1 179p에 있는데 앞으로 자주 나올 예정이라 미리 봐두세요
감사합니다 ㅜㅜ