[칼럼] 다항식 전개 다 해줬잖아, 근의 개수 의미 없다고 해줬잖아, 그냥 X발 다 해줬잖아
게시글 주소: https://orbi.kr/00072419708
꽤나 절은 학생들이 많았던 작수 21번
분모에 f가 있는 것 만 보고 f를 표준형으로 변형해서 f=0의 근을 가지고 어떻게 해보려 했을 수험생들이 많았을 것으로 생각됩니다.
물론 f가 분모에 있는 식의 극한값의 존재성을 묻는 문제니까 f=0가 되는 값을 찾는 건 당연히 해야 할 행동이 맞습니다. 하지만 그렇다고 해서 기껏 평가원이 일반형으로 제시해 준 식을 다시 표준형으로 바꾸고 -cde=4라는 못생긴 조건을 시험지 구석탱이에 적어두는게 과연 맞는 일일까요?
아닙니다.
왜냐구요? 왜냐하면 평가원이 분자에 제시한 f(2x+1)이라는 식에 의해서 해가 단 하나라는 것이 너무 자명하게 드러나거든요.
시작하기에 앞서
라는 식이 있다고 합시다. 이 식을 좌표 평면에 나타내면 중심이 원점이고 반지름의 길이가 1인 원이 된다는 사실을 알 수 있습니다. 이제 이 식에서 변수 x대신 2x를 대입한면
이 되는데 미적이나 확통 선택자들은 생소할 수 있는 타원의 방정식의 형태를 띠게 됩니다. 하지만 이차곡선을 잘 모르는 분들이더라도 저 방정식이 (+-1/2, 0)과 (0, +-1)을 지남을, 즉 원래의 원 방정식이 지나던 (+-1, 0)과 (0, +-1)을 떠올려볼 때 x축의 방향으로 1/2로 줄었다는 생각이 드실겁니다. 그럼 이번엔 y도 같은 짓을 해볼까요?
다시 원의 방정식이 되었습니다. 반지름이 1/2이 된 채로 말이죠. 그 말인 즉슨 y대신 2y가 합성된 경우 y축의 방향으로도 1/2로 줄어든다는 것을 알 수 있습니다.
그렇다면 분자에 있는 f(2x+1)이라는 것도 어떻게?
'y=f(x)의 그래프가 x축의 방향으로 1/2만큼 줄어들고 x축의 음의 방향으로 1/2만큼 평행이동'
한 것으로 인식한다면 근이 둘 이상인 경우는 절대 안 된다는 것을 알 수 있습니다.
왜냐? f가 둘 이상의 근을 가지고 있다면 근 사이의 간격도 1/2가 되어서 f=0이 되는 인수들을 f(2x+1)이 절대 커버할 수 없기 때문입니다.
그래서 식을 일반형으로 제시한겁니다. 삼차함수의 특성상 무조건 근을 하나는 가지게 되는데 그런 상황에서는 표준형으로 식을 쓰는게 더 불편하니까 처음부터 일반형으로 줘버린겁니다.
다항함수는 근이 무엇인지만 알아도 함수 자체를 결정해버릴수 있다는 특성이 매우 강력합니다. 하지만 이것에 매몰되어 다항함수의 근이 메인이 아닌 문제에 대해서도 무작정 표준형으로 다항함수를 바라보는 것도 좋지 않습니다. 그리고 평가원은 옛날부터 이런 사인을 계속 줬습니다.
단지 이과 수험생이 다항함수를 접하는게 오랜만이라 그런 정보가 실전되거나, 풀고도 깨닫지 못 했을 뿐
4차함수에 x^2이 인수로 포함되었음에도 굳이 일반형으로 줬습니다. 왜냐? 근의 개수, 근의 위치는 중요한 게 아니니까.
미분해서 극댓값이 되는 x들을 빠르게 찾은 뒤 해당 극값의 크기에 따라 g가 달라지는 것을 파악하고 두 극댓값이 서로 같을 때 a가 최대가 된다는 걸 캐치해야 되는 문제.
이 문제를 푸는 과정에서 f의 근이 개입할 여지가 있습니까? 표준형으로 주면 미분하는데 귀찮기만 하니까 평가원이 상냥하게 미리 전개해서 준겁니다.
마찬가지로 또 못생긴 일반형으로 제시해준 문제. 이번에도 f가 x를 인수로 가짐에도 불구하고 굳이 저렇게 제시했다는 것을 통해 f의 근은 이 문제에서도 별로 중요하지 않겠구나를 짐작케 합니다.
그리고 문제를 더 읽어보면 아예 x가 양수일 때만을 정의역으로 삼고 f의 역함수를 제시해서 둘 사이의 관계를 묻는 것이 메인인 문제임을 알 수 있습니다.
당연히 f의 근따위는 안중에도 없을게 뻔하죠.
실제로도 ㄱ, ㄴ을 통해 f-x가 x=2일 때 미분계수가 0이 되므로 f와 g의 미분계수가 x=2에서 모두 1이 됨을 파악해 f-g에 절댓값을 씌우더라도 x=2에서는 미분 가능할 것임을 파악하는 것이 메인으로 f의 근 따위는 아무 관심도 없습니다.
이처럼 평가원은 식을 제시하는 방법 하나만으로도 여러분에게 상당히 친절하게 구는 존재라는 것을 알 수 있습니다. 단지 수학 시험지라 수식으로 전달되는 메신저의 한계로 인해 여러분들이 제대로 받아들이지 못할 뿐.
뉴스의 행간을 읽어야 진짜 정보를 건져가듯, 문제의 행간을 읽어야 진짜 점수를 얻어갑니다.
결론)
기껏
일반형을 줬는데
왜 인수분해를 하는가
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
독서는 생각보다 내용일치가 아니고 문학은 생각보다 내용일치가 심함 여러번 경험하면서 느낀 생각임
-
끝 끝 끝 0
미적 집중해서 하고왔네요 다들 맛점 ㅎㅎ
-
다시보니 하나같이 평소였으면 1분컷할 문제들인데 에휴이..
-
점수는 같아도 의미는 다르죠? 4덮이 훨씬 어려웠으니까 실력 늘었다고 봐도 되려나요..?
-
오늘자 ㅇㅈ 2
근데 이제 영상으로 찾아온ㅋㅋ!
-
밥 사드림
-
개귀엽
-
한편으로는 국어를 못하면 수학이라도 잘해야 한다 생각함 진짜 뇌 회로에 힙스터...
-
3hr/12hr 0
25%달성
-
걍 구라 같은데
-
어케하는거에요?????
-
바질페스토 파스타 먹고싶음
-
문학 발췌독으로 풀어도 되나요??ㅠ오히려 발췌독 안되는 지문 만나면 더 시간 쓰게되는거 같던데…
-
계속 고민해봐도 모르겠어요
-
이면 문디컬 되는데 잇음?
-
입법부 192석 (개헌빼고 모든 법률 견제 없이 입법 가능) 사법부 대법원장 27년...
-
왜아닌데님이왜안오심
-
미적30번 0
동기가 풀어줌 감사해여!!
-
한신의 통탄 4
-
명제논리(nand 게이트)로 사칙연산 구현가능 사칙연산으로 nand 구현가능...
-
18금) 3
ㅈㄱㄴ
-
사자바위 컴퓨터 괜찮나요
-
월요일부터 일하는데 근로계약서 월요일에 쓰는건가 하루 1시간 일하고 시급 만이천원인가 그렇다던데
-
모르는 어휘라고 해야하나 고전시가에 쓰이는 그런 용어들 말고 그냥 낯선 단어가 너무...
-
수,약 가능한가요?
-
사문 수능개념 절반 정도 했고 끝나면 수특수완할건데 강의 꼭 들어야할까요......
-
문과 정시는 아니고 수시긴 한데 최저 맞추기 + 혹시모를 정시 때매 우선 생윤에...
-
자작문제에요?
-
작수3 미적 3덮 안풀었어요 3모 81점: 6(계산실수), 21(수열에서 1개...
-
기분좋규나
-
나 처음에 글 올렸을 때 성적인증이고 뭐고 없었는데 다들 의심 없이 받아들여줬음...
-
아이고 중년분들이 많네
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
안무섭나
-
혹시 재종/단과에서 재고 구할 수 있으신 분들.. 혹은 재종에서 받아서 어차피 버릴...
-
더프 15번 0
극한으로 안줘도 되는거 아닌가
-
드릴 그만풀고 다시 기출로 가야 할 듯.... 6모 끝나고 술처먹으려 했던 내자신이...
-
이거때매 벌써재종가야되나 고민이긴함.. 물론 6월이후엔 슬슬 갈각 잴라고 하긴했다만...
-
언 82 미 72 영어 97 물1 37 지1 39
-
대성에 괜찮은 입문~ 초반애 풀만한 엔제 많은거같은데 대성패스 사야하나
-
정보정리로 절대 못맞힘 문장 자체가 이해가 되고 납득이 되야 보기가 해석될 수 있게 만든 문항
-
젭알
-
싫어하시는 분들도 꽤 있으니까 나름대로 줄여보도록 노력하겠습니다 여러분도 차단...
-
이게 검은점 흰점 차이가 함수값 극한값 차이인지 무슨 다른 차이인지 번번이...
-
어휴언제다팔로잉하지
-
둘 중 뭐가 더 나은가요 노베에요
-
근데 정보가 너무 잘못된...
출제 의도 정상화의 신 평창섭…
좋은 칼럼 써주시는 분들은 언제나 감사합니다.
발문 읽고 반응 < 이게 정말 수능 국어/수학 어디에나 중요한 것 같아요
수학 같은 경우는 문제에서 대놓고 이 방법은 써라, 이 방법은 쓰지마라 제시해주다시피 한 적이 많고 / 국어는 선지에서 뭔가 부자연스러운? 이 수식어나 단어는 옳다고 치기에는 너무나도 부자연스러워서..마치 '평가원이 틀린 선지를 만들기 위해서 교묘하게 넣었다' 싶은 경우가 종종 느껴지는 둣..
국어 같은 경우에는 문제당 선지를 5개나 짜내야되다보니 기출 연습을 꾸준히 하면 보이는게 많은데, 수학은 기본적으로 수식으로 의도를 전달해야 되다보니 캐치를 특히나 어려워하는 경향이 있는 거 같습니다
그렇게 풀려는 시도는 매우 참신하네요
다만 수열 선택자라면 이게 나을 듯요
n{an|n은 자연수}<=3
이런 풀이 오랜만에 보네 쓰는 사람 드물었는데
19-21년도 유행이죠
22랑데뷰 엔제에선 자주 쓰임
윽건햄도 이거 보여주던데 ㄷ
헉
역시 정상화는 평창섭
드디어 대가원이 수학2를 정상화하네

뭔소리여살려줘요