[칼럼] 다항식 전개 다 해줬잖아, 근의 개수 의미 없다고 해줬잖아, 그냥 X발 다 해줬잖아
게시글 주소: https://orbi.kr/00072419708
꽤나 절은 학생들이 많았던 작수 21번
분모에 f가 있는 것 만 보고 f를 표준형으로 변형해서 f=0의 근을 가지고 어떻게 해보려 했을 수험생들이 많았을 것으로 생각됩니다.
물론 f가 분모에 있는 식의 극한값의 존재성을 묻는 문제니까 f=0가 되는 값을 찾는 건 당연히 해야 할 행동이 맞습니다. 하지만 그렇다고 해서 기껏 평가원이 일반형으로 제시해 준 식을 다시 표준형으로 바꾸고 -cde=4라는 못생긴 조건을 시험지 구석탱이에 적어두는게 과연 맞는 일일까요?
아닙니다.
왜냐구요? 왜냐하면 평가원이 분자에 제시한 f(2x+1)이라는 식에 의해서 해가 단 하나라는 것이 너무 자명하게 드러나거든요.
시작하기에 앞서
라는 식이 있다고 합시다. 이 식을 좌표 평면에 나타내면 중심이 원점이고 반지름의 길이가 1인 원이 된다는 사실을 알 수 있습니다. 이제 이 식에서 변수 x대신 2x를 대입한면
이 되는데 미적이나 확통 선택자들은 생소할 수 있는 타원의 방정식의 형태를 띠게 됩니다. 하지만 이차곡선을 잘 모르는 분들이더라도 저 방정식이 (+-1/2, 0)과 (0, +-1)을 지남을, 즉 원래의 원 방정식이 지나던 (+-1, 0)과 (0, +-1)을 떠올려볼 때 x축의 방향으로 1/2로 줄었다는 생각이 드실겁니다. 그럼 이번엔 y도 같은 짓을 해볼까요?
다시 원의 방정식이 되었습니다. 반지름이 1/2이 된 채로 말이죠. 그 말인 즉슨 y대신 2y가 합성된 경우 y축의 방향으로도 1/2로 줄어든다는 것을 알 수 있습니다.
그렇다면 분자에 있는 f(2x+1)이라는 것도 어떻게?
'y=f(x)의 그래프가 x축의 방향으로 1/2만큼 줄어들고 x축의 음의 방향으로 1/2만큼 평행이동'
한 것으로 인식한다면 근이 둘 이상인 경우는 절대 안 된다는 것을 알 수 있습니다.
왜냐? f가 둘 이상의 근을 가지고 있다면 근 사이의 간격도 1/2가 되어서 f=0이 되는 인수들을 f(2x+1)이 절대 커버할 수 없기 때문입니다.
그래서 식을 일반형으로 제시한겁니다. 삼차함수의 특성상 무조건 근을 하나는 가지게 되는데 그런 상황에서는 표준형으로 식을 쓰는게 더 불편하니까 처음부터 일반형으로 줘버린겁니다.
다항함수는 근이 무엇인지만 알아도 함수 자체를 결정해버릴수 있다는 특성이 매우 강력합니다. 하지만 이것에 매몰되어 다항함수의 근이 메인이 아닌 문제에 대해서도 무작정 표준형으로 다항함수를 바라보는 것도 좋지 않습니다. 그리고 평가원은 옛날부터 이런 사인을 계속 줬습니다.
단지 이과 수험생이 다항함수를 접하는게 오랜만이라 그런 정보가 실전되거나, 풀고도 깨닫지 못 했을 뿐
4차함수에 x^2이 인수로 포함되었음에도 굳이 일반형으로 줬습니다. 왜냐? 근의 개수, 근의 위치는 중요한 게 아니니까.
미분해서 극댓값이 되는 x들을 빠르게 찾은 뒤 해당 극값의 크기에 따라 g가 달라지는 것을 파악하고 두 극댓값이 서로 같을 때 a가 최대가 된다는 걸 캐치해야 되는 문제.
이 문제를 푸는 과정에서 f의 근이 개입할 여지가 있습니까? 표준형으로 주면 미분하는데 귀찮기만 하니까 평가원이 상냥하게 미리 전개해서 준겁니다.
마찬가지로 또 못생긴 일반형으로 제시해준 문제. 이번에도 f가 x를 인수로 가짐에도 불구하고 굳이 저렇게 제시했다는 것을 통해 f의 근은 이 문제에서도 별로 중요하지 않겠구나를 짐작케 합니다.
그리고 문제를 더 읽어보면 아예 x가 양수일 때만을 정의역으로 삼고 f의 역함수를 제시해서 둘 사이의 관계를 묻는 것이 메인인 문제임을 알 수 있습니다.
당연히 f의 근따위는 안중에도 없을게 뻔하죠.
실제로도 ㄱ, ㄴ을 통해 f-x가 x=2일 때 미분계수가 0이 되므로 f와 g의 미분계수가 x=2에서 모두 1이 됨을 파악해 f-g에 절댓값을 씌우더라도 x=2에서는 미분 가능할 것임을 파악하는 것이 메인으로 f의 근 따위는 아무 관심도 없습니다.
이처럼 평가원은 식을 제시하는 방법 하나만으로도 여러분에게 상당히 친절하게 구는 존재라는 것을 알 수 있습니다. 단지 수학 시험지라 수식으로 전달되는 메신저의 한계로 인해 여러분들이 제대로 받아들이지 못할 뿐.
뉴스의 행간을 읽어야 진짜 정보를 건져가듯, 문제의 행간을 읽어야 진짜 점수를 얻어갑니다.
결론)
기껏
일반형을 줬는데
왜 인수분해를 하는가
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
후임아 제발 빨리좀 와라 나 공부시작하고싶다
-
만년필 글씨 쓰기 왜케 어렵나요 ㅋㅋ
-
1타 같은 N타 유튜버 Zola임당^^ 유투브:...
-
4월 초에 온라인으로 신청했었는데 뭐가 잘못됐는지 오류가 났는지 신청이 취소가되서...
-
씨발 빛 동시에 도달하게하려고 "공간수축"이 말이되냐 2
씨발 뇌가있으면 그딴 애드혹 첨가해서 누더기 이론 처만들고 싶냐고 당연히 빛에...
-
수특 영어 0
영어 1~2 진동하는데 수특 영어 꼼꼼히 풀면 고정1 될 수 있을까요?
-
어떻게 된다는건가요.. 전문가들이 그냥 정하는거?
-
ㅋ
-
그럼 정법 현강 안가도 되는데
-
키보드 삼뇨 6
으흐흐
-
진짜 1호선은 11
ㅂㅅ이 따로없네 하 힘들어
-
미적이 약간 휘발되서 다시 돌릴려 하는데 머 할가요? 작년에 시발점 미적 상하 다...
-
과자 추천좀 1
오늘의 간식
-
끝에 가서야 쟁취
-
만년필 글씨체가 엄
-
동네에 사는 10대 나랑 동생뿐 2~30대는 업는듯, 젤 가까운 버스정류장 걸어서...
-
라는 발상을 떠올리지 못하면 풀기 힘든 문제 있잖아요 이거 그당시에도 흔한...
-
그거 저도 겪고있어요 요즘 저 연대 보내줬다고 해도 과언아닌 재종시절 쌤 생각하면...
-
피곤해요 0
-
카페인 ㅇ 0
배아파
-
이번에는 수능모의고사를 하나 만들었습니다 (이건 그냥 오픈하는 것이니 학원 강사분들...
-
사진 찍어서 옮기기는 너무 힘들고 삐뚤삐뚤하고 반짝거려서 영 거시기하네요
-
이맛이지.. 이맛에 삼수하는거 아니겠어
-
산책죰 해야겟다
-
현실적으로 1
삼수한 22살 여자(25학번) 단국대 평범한 공대나와서 어디까지 들어갈수있나요?
-
펑 2
흐물흐물
-
26 28틀 93점. 26은 계산실수….ㅋㅋ
-
어렵다 어려워
-
너무 질질 끄는거 같은데 파데+킥오프 1-2주안에 빨리 돌리고 아이디어로 갈아타도...
-
수학2에서 변곡점 나오면 교과외다 이러는데 수학2 삼차함수에서 변곡점의 개념과...
-
"쏟아지는 인강과 교재들 속에서, 비문학 공부의 방향을 잃어버리진 않으셨나요?"...
-
ㅋㅋㅋㅋ
-
평가원 #~#
-
나는 선천적 국어 재능충 특유의 올곧은? 느낌이 너무 부러움 5
ㅈㄴ 교과서 대로 살고 자존감 높으면서 사회성이 좋음 그리고 책 많이 읽은 데서...
-
공부하면서 스트레스좀 받지마 ㅅㅂ
-
다 맞을줄 알고 답지 봤는데 보자마자 기분이 메롱해지는 마법...
-
화질이 선명해
-
이쁘지 2
이쁘게 찍었어
-
학교장 추천을 1등급 애들한테만 쓰게 해주는데 왜 이러는거야? 난 2등급 초반이라고...
-
모고따위긴하지만 1주일 시원하게 미루지..
-
부럽다 정시러들아 난 저거 또 언제듣냐 ㅠㅠ
-
.
-
날 다 풀린 듯 0
이게 봄이지 ㄹㅇ
-
고등학교때도 집중력 최악 수준이었는데 대학 오니까 가관임 그냥 30분 빡공하고...
-
벚꽃사진 0
-
길막투길막 민폐투민폐 길막돌 민폐돌 등등으로 1개월차부터 국민 비호감으로 인지도 쌓는중 ㅋㅋㅋ
-
재수생 작수 높3이구요... 국어 강민철t 강기분 듣고 있는데 3월 중순에 시작해서...
-
팔로워분들께 3
육진방언 글이 캐스트에 올라기고 문법 글이 메인에 가서 팔로워가 늘었는데 어......
-
3일은 연기해줘 나도 개표방송 보고자게
출제 의도 정상화의 신 평창섭…
좋은 칼럼 써주시는 분들은 언제나 감사합니다.
발문 읽고 반응 < 이게 정말 수능 국어/수학 어디에나 중요한 것 같아요
수학 같은 경우는 문제에서 대놓고 이 방법은 써라, 이 방법은 쓰지마라 제시해주다시피 한 적이 많고 / 국어는 선지에서 뭔가 부자연스러운? 이 수식어나 단어는 옳다고 치기에는 너무나도 부자연스러워서..마치 '평가원이 틀린 선지를 만들기 위해서 교묘하게 넣었다' 싶은 경우가 종종 느껴지는 둣..
국어 같은 경우에는 문제당 선지를 5개나 짜내야되다보니 기출 연습을 꾸준히 하면 보이는게 많은데, 수학은 기본적으로 수식으로 의도를 전달해야 되다보니 캐치를 특히나 어려워하는 경향이 있는 거 같습니다
그렇게 풀려는 시도는 매우 참신하네요
다만 수열 선택자라면 이게 나을 듯요
n{an|n은 자연수}<=3
이런 풀이 오랜만에 보네 쓰는 사람 드물었는데
19-21년도 유행이죠
22랑데뷰 엔제에선 자주 쓰임
윽건햄도 이거 보여주던데 ㄷ
헉
역시 정상화는 평창섭
드디어 대가원이 수학2를 정상화하네

뭔소리여살려줘요