[칼럼] 다항식 전개 다 해줬잖아, 근의 개수 의미 없다고 해줬잖아, 그냥 X발 다 해줬잖아
게시글 주소: https://orbi.kr/00072419708
꽤나 절은 학생들이 많았던 작수 21번
분모에 f가 있는 것 만 보고 f를 표준형으로 변형해서 f=0의 근을 가지고 어떻게 해보려 했을 수험생들이 많았을 것으로 생각됩니다.
물론 f가 분모에 있는 식의 극한값의 존재성을 묻는 문제니까 f=0가 되는 값을 찾는 건 당연히 해야 할 행동이 맞습니다. 하지만 그렇다고 해서 기껏 평가원이 일반형으로 제시해 준 식을 다시 표준형으로 바꾸고 -cde=4라는 못생긴 조건을 시험지 구석탱이에 적어두는게 과연 맞는 일일까요?
아닙니다.
왜냐구요? 왜냐하면 평가원이 분자에 제시한 f(2x+1)이라는 식에 의해서 해가 단 하나라는 것이 너무 자명하게 드러나거든요.
시작하기에 앞서
라는 식이 있다고 합시다. 이 식을 좌표 평면에 나타내면 중심이 원점이고 반지름의 길이가 1인 원이 된다는 사실을 알 수 있습니다. 이제 이 식에서 변수 x대신 2x를 대입한면
이 되는데 미적이나 확통 선택자들은 생소할 수 있는 타원의 방정식의 형태를 띠게 됩니다. 하지만 이차곡선을 잘 모르는 분들이더라도 저 방정식이 (+-1/2, 0)과 (0, +-1)을 지남을, 즉 원래의 원 방정식이 지나던 (+-1, 0)과 (0, +-1)을 떠올려볼 때 x축의 방향으로 1/2로 줄었다는 생각이 드실겁니다. 그럼 이번엔 y도 같은 짓을 해볼까요?
다시 원의 방정식이 되었습니다. 반지름이 1/2이 된 채로 말이죠. 그 말인 즉슨 y대신 2y가 합성된 경우 y축의 방향으로도 1/2로 줄어든다는 것을 알 수 있습니다.
그렇다면 분자에 있는 f(2x+1)이라는 것도 어떻게?
'y=f(x)의 그래프가 x축의 방향으로 1/2만큼 줄어들고 x축의 음의 방향으로 1/2만큼 평행이동'
한 것으로 인식한다면 근이 둘 이상인 경우는 절대 안 된다는 것을 알 수 있습니다.
왜냐? f가 둘 이상의 근을 가지고 있다면 근 사이의 간격도 1/2가 되어서 f=0이 되는 인수들을 f(2x+1)이 절대 커버할 수 없기 때문입니다.
그래서 식을 일반형으로 제시한겁니다. 삼차함수의 특성상 무조건 근을 하나는 가지게 되는데 그런 상황에서는 표준형으로 식을 쓰는게 더 불편하니까 처음부터 일반형으로 줘버린겁니다.
다항함수는 근이 무엇인지만 알아도 함수 자체를 결정해버릴수 있다는 특성이 매우 강력합니다. 하지만 이것에 매몰되어 다항함수의 근이 메인이 아닌 문제에 대해서도 무작정 표준형으로 다항함수를 바라보는 것도 좋지 않습니다. 그리고 평가원은 옛날부터 이런 사인을 계속 줬습니다.
단지 이과 수험생이 다항함수를 접하는게 오랜만이라 그런 정보가 실전되거나, 풀고도 깨닫지 못 했을 뿐
4차함수에 x^2이 인수로 포함되었음에도 굳이 일반형으로 줬습니다. 왜냐? 근의 개수, 근의 위치는 중요한 게 아니니까.
미분해서 극댓값이 되는 x들을 빠르게 찾은 뒤 해당 극값의 크기에 따라 g가 달라지는 것을 파악하고 두 극댓값이 서로 같을 때 a가 최대가 된다는 걸 캐치해야 되는 문제.
이 문제를 푸는 과정에서 f의 근이 개입할 여지가 있습니까? 표준형으로 주면 미분하는데 귀찮기만 하니까 평가원이 상냥하게 미리 전개해서 준겁니다.
마찬가지로 또 못생긴 일반형으로 제시해준 문제. 이번에도 f가 x를 인수로 가짐에도 불구하고 굳이 저렇게 제시했다는 것을 통해 f의 근은 이 문제에서도 별로 중요하지 않겠구나를 짐작케 합니다.
그리고 문제를 더 읽어보면 아예 x가 양수일 때만을 정의역으로 삼고 f의 역함수를 제시해서 둘 사이의 관계를 묻는 것이 메인인 문제임을 알 수 있습니다.
당연히 f의 근따위는 안중에도 없을게 뻔하죠.
실제로도 ㄱ, ㄴ을 통해 f-x가 x=2일 때 미분계수가 0이 되므로 f와 g의 미분계수가 x=2에서 모두 1이 됨을 파악해 f-g에 절댓값을 씌우더라도 x=2에서는 미분 가능할 것임을 파악하는 것이 메인으로 f의 근 따위는 아무 관심도 없습니다.
이처럼 평가원은 식을 제시하는 방법 하나만으로도 여러분에게 상당히 친절하게 구는 존재라는 것을 알 수 있습니다. 단지 수학 시험지라 수식으로 전달되는 메신저의 한계로 인해 여러분들이 제대로 받아들이지 못할 뿐.
뉴스의 행간을 읽어야 진짜 정보를 건져가듯, 문제의 행간을 읽어야 진짜 점수를 얻어갑니다.
결론)
기껏
일반형을 줬는데
왜 인수분해를 하는가
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
황혼<<색채어임? 14
황혼같이 명사 자체에 색을 뜻하는 글자가 있으면 이건 색채어라 볼 수 있음?
-
50개 완벽하게 외우는데 한시간 넘게걸림 ㅜㅜ
-
격리다 격리 1
역시 독감이야
-
다시마 2개 입갤 ㅋㅋㅋ
-
레전드레전드 여돌 원탑
-
23,24 백분위 80후반으로 3등급 정도 됐었는데요 25 9모 ,수능 풀어보니까...
-
아흥 4
-
안녕하세요! 11
이번에 오르비 시작했어요 드디어 10일 지나서 첫글씁니다
-
뇨뇨뇨
-
더 늦게 가면 어케 되나요
-
야 이거 살까 0
공교롭게도 예산이 38만원임 근데ㅜ별로 안이쁜거 같기도하고
-
반수 연애.. 2
반수 할건데 4살차이 과선배가 좋아졌어요ㅜ 어떡해요? 왜 자꾸 마주치는...
-
제주 방언으로 갈까요 언어학 개론(형태론, 통사론)으로 갈까요 아니면 흠...
-
해보고 싶었는데
-
재수생 기코 0
기코 끝내고 입문n코 들으려고 하는데 수특 풀긴 풀어야겠죠?..... 아 수특은...
-
퉁퉁퉁퉁퉁퉁퉁 사후르가 세다는 사람이랑은 대화 안함 5
그거 다 바이럴 가짜뉴슨데 그거에 속는거 보면 하;;
-
국어 화작런 2
언매로 백분위 현역 64 재수 39 나왔는데 현실적으로 백분위 68정도만 나와도...
-
지금?
-
토론할 분 구함
-
회사가 달라서 여쭤봄 컴맹이라 양해좀
-
강기원 시즌2 6
장재원t 시즌2부터 듣고 있었는데 저랑 좀 안 맞는 느낌이라 지금 뒤늦게 강기원t...
-
봄바르딜로 크로코딜로 이거 ㅈㄴ ㅂㅅ 같다고 생각했는데 13
계속 보다 보니까 재밌노 ㅋㅋㅋㅋ 에라이
-
D-8 7
30문제 남았다 오후에 실모할지 복습부터할지 봐야겠군
-
그러합니다...
-
여백에 회음후 열전 만년필로 필사했음 불려가는거 아니겠지 ㅋㅋ..
-
럭키 77 0
https://orbi.kr/00072740989/ 좋아요 77 캬 좀 더 글을...
-
어디갈까요 성적 최우선 다녀보신분들 장단점도 기술해주심 갬사하겠습니다..!
-
친척형이 준 국어의기술책인데, 친척형은 오래전에 수능봤어요 전 언어와매체 선택자인데...
-
아오오오오오오오 5
오니
-
모교 6모정원 60명이면 모집개시당일 마감일까요?? 0
그렇겠죠...?? 학교 특성상 학교응시n수생 60명 훨씬 넘을 것 같은데...
-
지금 페이스면 6모전에 딱 개념기출 1회독 할꺼같은데 속도 올릴까요?
-
현역 공부 효율 0
3모보고 멘탈 나간 이후로 공부가 잘 안되고,,, 원래 이정도로 수학이 안풀리진...
-
같은 문제라도 풀이가 ㄹㅇ 눈에 띄게 좋아졋군 상당히 좋군
-
난이도 어떤거같나요? 전반적으로 드릴345보단 쉬운거같은데
-
둗옹
-
독서 고1 기출 3
손실 보상 청구권, 실어증 얘네 풀어 보셨나요 하... 정보도 많고 용어도...
-
휴강인지 모르고 학교 갔네 카톡에도 동기가 톡 했는데 못 보고 도서관에 가서 중간 준비나 할까
-
요즘 독감이 유행이래요
-
운문은 나름 치고 현대소설까지는 어떻게 어떻게 하는데 고전소설을 진짜 못 해 먹겠음...
-
사문 개념강의 다들었는데 다음 커리인 임팩트를 하는게 좋을까요 아니면 그냥 기출푸는게 좋을까요?
-
열 바로 내림 근데 열은 내려도 아직 힘드네
-
재수로 약대에 들어간 사람입니다. 현재 2학년인데 약대를 다닐수록 한번더...
-
깨달은거 3
학교서 눈마주치면 어색하게 지나쳐야되는 사람들이 꽤 잇다는거 학교생활하지도 않았는데...
-
뭐지진짜
-
생1이 탐구 17개 과목중에 3등급 맞기 제일 쉬움 그 이상은 근데 존나 어려움...
-
평상시에 속으로 혼잣말 많이하고 뭐 생각할때도 속으로 혼잣말 많이하고 공부할때도...
-
시모노세키 끝 11
이제 히로시마로
출제 의도 정상화의 신 평창섭…
좋은 칼럼 써주시는 분들은 언제나 감사합니다.
발문 읽고 반응 < 이게 정말 수능 국어/수학 어디에나 중요한 것 같아요
수학 같은 경우는 문제에서 대놓고 이 방법은 써라, 이 방법은 쓰지마라 제시해주다시피 한 적이 많고 / 국어는 선지에서 뭔가 부자연스러운? 이 수식어나 단어는 옳다고 치기에는 너무나도 부자연스러워서..마치 '평가원이 틀린 선지를 만들기 위해서 교묘하게 넣었다' 싶은 경우가 종종 느껴지는 둣..
국어 같은 경우에는 문제당 선지를 5개나 짜내야되다보니 기출 연습을 꾸준히 하면 보이는게 많은데, 수학은 기본적으로 수식으로 의도를 전달해야 되다보니 캐치를 특히나 어려워하는 경향이 있는 거 같습니다
그렇게 풀려는 시도는 매우 참신하네요
다만 수열 선택자라면 이게 나을 듯요
n{an|n은 자연수}<=3
이런 풀이 오랜만에 보네 쓰는 사람 드물었는데
19-21년도 유행이죠
22랑데뷰 엔제에선 자주 쓰임
윽건햄도 이거 보여주던데 ㄷ
헉
역시 정상화는 평창섭
드디어 대가원이 수학2를 정상화하네

뭔소리여살려줘요