미적분(28번) 자작 문제 (500덕)
게시글 주소: https://orbi.kr/00072396054
몇 주전 배포했던 제 첫번째 실모에 있는 미적분 28번 문제인데요. 개인적으로 기존 문제가 너무 아쉬워서 문제를 리워크해서 올립니다.
최초 정답자 500덕 드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나만그랬음? BIS가 난이도 원탑인거같은데
-
숭실대 와서 7
나 찾아와서 혹시 '신드리님이세요?' 라고하고 님 닉넴 밝히면 밥사줌
-
다음생에 태어난다면
-
바밤바 먹다 목에 걸림 17
인터넷에 목에 뭐 걸렸을 때 빼는 법 검색하고 시도해보려하니까 다 녹아서 내려갔음...
-
하..
-
킬캠 공감 11
인강에는 시즌별로 3회분만 줌 현강 들으러 가면 매주 과제문제 나눠줌 좋은 자리...
-
엄
-
현실에 루비같은 여자 잇으면 좋겠음
-
그래서 안 가는거임 그래서 ㅇㅇ
-
뉴런 바로 들으면 안되는거임? 기존에 시발점이랑 다름? 성적 올라서 국숭세단 라인...
-
2호선 오르비 꺼라 13
넵 예아
-
있으면 어떻게 사용했나요?
-
현우진 커리 관련 질문있습니다. 도와주시면 감사할꺼같습니다 11
재수생입니다. 작년 수능 기준 수학이 높4가 떴습니다. 메가스터디를 해본적이없어서...
헉 개어렵네
3번!!
우선...못 풀었구요... 다만 소감? 느낀점? 의문점?을 써보자면
(가) 조건을 미분해보면 특정구간에서 상수함수(y=1), 특정 구간에서 f(x)의 역함수인 것 같은데 사실 g(x)가 연속이라고만 나와있지 미분가능하다는 말이 없어서 (가) 조건을 미분할 수 있을지도 잘 모르겠고, 설사 미분가능하다는 조건이 제시되어있다고 하더라도, 실제로 g가 상수함수에서 f의 역함수로 바뀔 때 미분 가능한가(=미분계수가 0)에 대해서도 잘 모르겠습니다.
상당히..어렵네요.. 해설 올려주세요..!
사실 미분가능성에 대한 의문이 제기될 것을 어느 정도 예상하고 있었습니다 일단은 이 (가) 조건을 미분해서 f(g(x))=x or g'(x)=0 이 되도록 하는 것을 나머지 조건들과 잘 조합해서 그래프를 추론하는 것이 의도는 맞습니다. 하지만 말씀해주신 것처럼 정말 엄밀하게 따져본다면 이 문제는 논란의 소지가 있는 문제가 맞습니다. 그럼에도 불구하고 제가 이 문제를 공유한 이유는 미분 했을 때 나오는 두 식이 전부 g'(x)만을 나타내는 식이 아니기 때문입니다 예를 들어 만약 g'(x)=0 or g'(x)=4 라는 조건을 만족시키는 함수가 있다고 해봅시다 이렇게 된다면 g'(x)가 0에서 4로 바뀌는 순간의 x는 정의를 할 수가 없게 됩니다 즉, g'(x)가 0이 될 수도 4가 될 수도 없습니다. 따라서 그래프가 끊기게 됩니다. 하지만 이 문제에서는 g'(x)=0 or f(g(x))=x 두 식 중 하나만 만족시키면 되므로 g(x)가 첨점이 발생하게 되어도 f(g(x))=x이라는 식이 발동되어 그래프의 끊김을 메울 수 있습니다.
4번!