(논리황 필독)LP지문 베이즈 주의 지문 좌표로 표현
게시글 주소: https://orbi.kr/00072392760
2018학년도 9월 모의평가 LP지문 에서 전건 긍정 규칙 관련해서 참이고 거짓인 걸 시각적으로 보일 수도 있을 것 같다 이런 생각이 나서 좌표평면에 표현하는 걸 생각해봤는데 생각해보니까 2020수능 베이즈주의 지문도 그럴싸하게 표현이 되는 거 같아서 써봤습니다. 논리학 잘 아시는 분들 제가 후술할 방법으로 따져도 오류가 없는지 따져주세요. 종이에 그림을 그려가며 읽으시면 훨씬 이해가 편할 것 같습니다.
1. 조건문의 전건이 참이면 x=1, 전건이 거짓이면 x=-1을 그리고 후건이 참이면 y=1, 후건이 거짓이면 y=-1을 그리고 조건문이 참인건 전건을 따져 그린 직선과 후건을 따져 그린 직선의 교점과 원점의 기울기가 1이면 조건문이 참, 기울기가 -1이면 조건문이 거짓 이런 식으로 따지는 겁니다. 참인 동시에 거짓은 다음과 같이 표현합니다. 예를들어 전건이 참인 동시에 거짓,후건이 거짓이면 x=1과 x=-1을 둘 다 그리고 y=-1을 그려서 만나는 교점은 (1,-1),(-1,-1)이 나오니까 기울기가 1도 나올 수 있고 -1도 나올 수있으니까 조건문은 참인 동시에 거짓이다 이런식으로 따지는 겁니다. 이런 식으로 따지는 것에 오류는 없을까요?
2. 베이즈 주의자는 어떤 명제가 참인지 거짓인지에 대해 가장 강한 믿음의 정도부터 가장 약한 믿음의 정도까지 가질 수 있다고 했습니다. 그래서 다음과 같이 따져보는걸 생각해봤습니다.
일단 가질 수 있는 믿음의 정도를 -1이상 1이하로 표현합니다. 예를들어, 어떤 명제가 참이라고 강하게 믿는다면 0.9이런식이고 어떤 명제가 거짓이라고 약하게 믿는 다면 -0.3이런식입니다. 그리고 조건화 원리에서 A가 참이라는걸 새롭게 알게된다면 B가 참이라는 것에 대한 믿음의 정도는 애초의 믿음의 정도에서 A가 참이라는 조건하에 B가 참이라는 것에 대한 믿음의 정도로 되어야합니다. (그리고 확통에서 조건부확률 이런거에서 수식 같은 것도 나오는 걸로 압니다). 그리고 고전 논리에서 전건 긍정 규칙이 성립하는 걸 1번문단에서 서술한 것으로 생각하면 기울기가 1인 만큼 믿는 것 이라고 생각할 수 있습니다.
위의 내용을 바탕으로 다음과 같이 표현하는 것이 오류가 있는지 궁금합니다. '내일 비가 온다' 라는 걸 0.3정도로 믿는다고 하고 '오늘 비가 온다'가 참이라는 조건하에서는 내일 비가 온다를 0.5정도로 믿는다고 할때, 이걸 시각적으로 표현하기를 비가오는거랑 관련없는 정보 (외계인이 존재한다)가 전건일때는 원점에서 (1,0.3)까지의 기울기를 따져서 그 정도가 0.3으로 유지 되는데 '오늘 비가 온다'라는 걸 참이라고 새롭게 알게 되면 기울기가 0.5가 되게 (0.4,0)과 (1,0.3)의 기울기로 따지는 것과 같이 하는 겁니다. 근데 이렇게 되면 A명제가 참임을 믿는 정도와 B가 참일때 A명제가 참임을 믿는 정도를 수치로 알면 B라는 정보를 믿는 정도가 정해진다는 건데 이게 말이 되나요? ㅋㅋ 뭔가 말이 되는걸수도 있을거같은게 A명제가 참임을 믿는정도가 k면 'B가 참인 경우에 A가 참이다'라는 명제가 성립하려면 애초에 B를 믿는 정도가 1-k보다 크면 안된다(기울기가 1보다 클 수 없으니까). 이런 것도 도출할 수 있습니다.
다 적진 못했지만 제가 쓴 이 방법으로 막 이것 저것 따지다보면 뭐가 되게 많이 나옵니다. 논리학 좋아하시거나 많이 아시는 분들 제 방법 한번 검토해 주시면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
젭알
-
을 올리며 청춘들을 응원해 봅니다 누추한 실력이나 모두들 힘을 내서 살아 봅시다...
-
어느순간 마음을 고쳐서 남들 다 행복햇으면좋겟다고 생각하니까 마음이 편안해짐 눈에...
-
레전드 기만하나함 16
담배끊은듯
-
전 전자인데 항상 문제 막혀서 해설을 보고 모고 풀고 틀린거 보면 ‘아 이거??...
-
작년거 있는데 걍 작년거 풀고 작수는 따로 뽑아서 풀어보는게 낫겠죠?
-
허수라서 아직 엔제 시작도 못했는데 그냥 보고 있으면 든든해짐
-
낼도 화이팅
-
연대 윗공 포공 이쪽 라인인데 그래도 이정도는 왔다는 안도감은 들어도 설공을 못...
-
피램 문학 day2 복습 day3 진도 피램 독서 day1, 2 진도 점심먹으면서...
-
내가 주말에 퍼져서 공부 못하는게 문젠데 이게 아침에 일어나서 유튜브 보느라...
-
근데 현생에서 여기서 가스라이팅하는정도로 메디컬 좋다고생각하심?
-
대학보다 4
오르비가 훨씬 재밌음 돈도 안들어가고
-
그냥 지금 과외나 하다못해 배달이나 일용직이라도 해서 돈버는게맞음 아니면...
-
강민철쌤 독서는 호불호가 좀 갈리는 것 같더라구요. 둘중에 어느분이 더 나을까요?...
-
담임쌤이 상담한다고 수시 원하는 대학교 6지망까지 써보라 해서 써봤는데 어때요 3
생기부는 당연히 ai, 컴퓨터로 맞춰 놨습니당 담임쌤은 나름 괜찮게 썼다고 하셨는데...
-
컴공 고점 찍을 시점부터 꾸준히 말해왔다 모든 분야는 사이클이 있다고 전화기컴 예시...
첫번째 댓글의 주인공이 되어보세요.