수학을 감으로 푸는게 말이 됨?
게시글 주소: https://orbi.kr/00072381452
됨 ㅇㅇ 안 될 이유가 없음
단, 여러분이 떠올리는 '감'과 제가 말하는 '감'에는 차이가 있을 수 있습니다
문제 하나 예시로 들어서 설명하자면
문제를 보자마자 처음 드는 생각은
'가운데에 거지같이 생긴 식 하나', '아래쪽에 못생긴 그래프 하나', 'g가 불연속?' 정도가 될 수 있을텐데, 해답을 내기 위해서 문제를 좀 더 뜯어 먹어보면
g는 f(2^x)의 우미분 계수에 절댓값을 씌운 것이 눈에 들어올 것이고, '우미분계수가 불연속? -> 첨점? -> 하단의 그래프에서 x=자연수일 때마다 첨점 존재!'라는 사실이 점점 와닿을 것입니다.
이 상태에서 '아 감 잡았다.'라고 판단하고 (1/32, 32)에서의 자연수의 개수인 31을 n으로 적고 치우면 서두에 적은 전자의 '감'만으로 문제를 푼 꼴이 되는 것과 다름이 없습니다.
여기서 후자의 '감'이 한번 발동한다면 '근데 단순 첨점으로 판단하게 할거면 절댓값은 왜 씌워둔거지?', '왜 하필 우미분계수만 준거지?'라는 의문이 들 수 있습니다. 여러 문제를 풀고, 틀리고, 절어본 경험에 의해 수학적 나락 회피 센서가 작동하는 겁니다.
이를 통해 문제를 한번 더 돌아보면 문제식은 어차피 우미분 계수니까 분모는 절댓값의 영향을 받지 않으므로 분자에 있는 절댓값 내부의 식의 대소에만 영향을 받으니까
로 두고 보면 'x=m(m은 자연수)일 때 충분히 작은 양수 h에 대하여 f'(m+h)>0이면 (m, m+1)에서는 f를 뒤집어서 판단해야겠구나'를 알게 되어 n=3k는 a가 될 수 없음을 판단하고 n=21을 적는 것이 수학적 '감'으로 문제를 잘 해결한 사례라고 할 수 있습니다.
사례를 하나 더 들자면
사실 이 문제는 전자의 '감'으로 풀기는 힘들었을겁니다. 감이 안 올거거든요. 자연수가 한둘도 아니고 1부터 감으로 하나하나 찍어넣는건 현실적으로 불가능하니.
그럼 여러 경험을 한 뒤에는 어떤 감을 받게 되느냐
'천장이 있구나'
'천장은 12일 것이다'
'k의 후보군은 12의 약수일 것이다'
라는 감이 바로 왔습니다. '문제에서 구체적인 자연수 k의 개수를 줬으니 k가 무한히 존재할 리 없으며, f(x)=a가 되는 x의 개수가 더 적어야하면 일반적인 삼각함수의 2개 주기 분량인 [-2pi, 2pi]에서 g보다 f가 더 많이 반복된다면 a가 되는 x의 값이 더 많아지므로 조건을 만족하는게 불가능할 것이다.'라는 결론에 도달할 수 있기 때문입니다.
또한 문제의 조건상 f(x)=a인 x는 모두 g(x)=a여야 하는데, 주기의 싱크로가 서로 안 맞게 되면 이를 만족하지 못 할 것이 자명하므로 12의 약수 중에서 따져봐야 함이 합리적이기 때문입니다.
이처럼 수학 문제에서 '감'은 문제 풀이에 있어 매우 중요합니다. 특히나 수학 문제를 제한된 시간 내에 풀어야 하는 형태인 시험에서는 그 중요성이 더욱 올라감은 말 할 필요가 없습니다.
다만 이 수학적 '감'을 혼동하지 않으셨으면 합니다. 물론 두 형태의 '감' 모두 그 근원은 이전에 풀어본 문제에 있습니다. 둘 다 '내가 전에 A라는 문제를 보니까 이렇게 풀더라'를 근거로 문제에 대한 접근을 시작하게 되는데 문제의 유형을 수박 겉핥기 식으로 정리해서 풀어왔다면 감으로 풀었을 때 언젠간 크게 사고가 터질 것입니다. 문제의 형태는 A'인데 발문에 깔린 의도는 B인 문제는 얼마든지 만들 수 있으니까요.
하지만 거시적인 차원에서 문제를 바라봤다면 당신의 감은 문제를 푸는 내비게이터 역할을 충실히 수행해 줄 것입니다.
이런 이상한 문제에서도 말이죠
일본에서 나름 유명하다면 유명하다고 할 수 있는 죠치대의 2010년도 기출입니다.
일본어를 잘 모르더라도 A, B, C의 대소관계를 파악하라는 건 알 수 있으실 겁니다.
B와 C 사이의 대소관계는 지수법칙 이용해서
라는 사실을 바로 파악할 수 있지만 A는 도대체 어떻게 처리해야 할지 고민이 되실겁니다.
이때 C가 50^100. 즉 50이 100번 곱해졌고, A가 100!. 즉 1부터 100까지 100개의 수가 곱해졌다는 사실을 포착하고, 또 1부터 100까지의 수에 대하여 그 중간이 50이라는 것이 눈에 보인다면
로 파악할 수 있고, 이는
로 정리해서 일반적으로
의 곱이 n=1부터 50까지 반복된 것이라고 나타낸다면 이것이 50^2보다 커지는 경우가 생각보다 많지 않다는 걸 포착하고 A가 C보다 작지 않을까? 라는 감을 잡고 풀이를 전개해 나갈 수 있습니다.
일본 유튜브를 참고하면 저보다 더 깔끔하게 나오는 풀이도 있지만 제가 푼 방법을 여기서 간단히 소개해드리자면
이처럼 문제를 처음 마주쳤을 때 받게 되는 감은 문제 해결에 있어 매우 중요한 단서가 될 수 있습니다.
다만 당신이 받은 '감'이 진짜로 도움이 되는 것인지. 아니면 장애물로 작용할 것인지는 본인이 지금까지 문제를 풀어오면서 얼마나 생각을 해봤느냐에 따라서 달라질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
으악 5
으악!!!!!
-
첫 룸메는 친구였는데 디스크 터져서 나가고 두번째 룸메는 30살 메디컬 지망생...
-
와 1등 유이기타 ㄷㄷ
-
1등 먹어야지
-
드릴5 수2 1
미분파트에서 22번급이라고 하는 문제들 정답률이 50퍼정도 되는 것 같은데 그냥...
-
아님 걍 기계적으로 연계비율만 조절하는 관계인가
-
유체역학 후기. 1
대학 (전공학): 최초 진입 시 지랄 같음. 외울 거 개 많음. 문과 체질 애들은...
-
알수있음 답변3. 최서희 서울 중동고 교사 / EBS 대표강사 제가 앞서 말씀드린...
-
이성찾으러 나가는게 보통 목적임? 안가봐서 ㅠㅠ
-
수학 고수분들 와보셈 13
문제에서 물어본건 ABE외접원 반지름 더 쉽게푸는법 있으면 알려주세여 아래는 제가...
-
만약에 제가 대학 진학으로 타지역에 가야하면 어떡하죠… 헤어지고 싶은건 절대 아닌데...
-
[뿌려요] 출제된 적 있는 수능특강 고전소설 작품 편집본 10
안녕하십니까 입시림입니다. 제목이 곧 내용입니다. 수능특강에 수록된 고전소설 작품들...
-
우리는 25 25 23이어서 이거 20살들 나오면 어카지 했는데 상대도 24 23...
-
시소 정리 3
미적이랑 통통이들은 잘 모르지 않을가
-
오프 메가에서도걍파는검가
-
작수 미적 백분위 92입니다. (21 22 28 29 30) 고2때까진 쎈 고쟁이...
-
다니던 학교에서 보시는 분 많나요? 재종 그런 거 안 다니다가 시험만 따로 신청해서...
-
작년 생각나고 기분이 뭔가뭔가임..
-
엔제 결정장애 5
첫 엔제로 인강컨 엔제를 사서 대가리 부숴지면서 인강을 같이 들을까.. 이해원 같은...
-
평가원/교육청 중에서 가장 어렵거나 재밌는 문제는 뭐라고 생각하시나요? 4
전 어려운건 20181130 개인적으로 재밌었던건 241122였던거 같습니다
-
마라단 엽떡단이 더 귀여움뇨
-
ㄹㅇㅋㅋ
-
으하하
-
'도덕 문장'의 진리 적합성을 다룬 인문 주제 통합 지문에서는 여러 입장을 파악하고...
-
풀배터리 검사할 때 그림 존나 못그려서 쪽팔린 기억 있으면 개추좀 ㅋㅋ
-
치킨 먹고 싶다 6
허니콤보에 엽떡이나 황올에 치즈볼이나 고추마요 블랙알리오 반반이나 노랑통닭 후라이드...
-
겉보기보다 쉬웟네
-
사실병장되고싶음..
-
뭐뭐가 되 6
이 밈 왤케 맘에 안 들지 어미 빼 먹지 말라고 이것들아
-
그게 나야 바 둠바 두비두밥~ ^^
-
국어 장창현쌤 0
들어보신분 계시나요?
-
걷는건 그냥 걸으면 되는데…
-
아 신검 0
기구한 인생이다
-
자취방 도착 8
이번주도힘내봅시다
-
순간 진짜 김미레 님인 줄 ㅋㅋㅋㅋ
-
내신 화학 고르지 말걸...
-
수학 과외를 하니까 내 실력도 오르는 느낌
-
햄부기 0
-
내일 점심은 3
햄부기
-
아이힘드러~~
-
by Kurt Cobain
-
많은 문풀경험에서 오는 거시적 패턴 + 우선순위 결정하기 + 숫자감각 + 유연성
-
안녕하시개 6
-
나만그런가,,,
-
https://youtu.be/EPQTi2WXMKA?si=kXOIeOhYPtEa_GzE 먼가 그렇다
-
날이 뿌연게 너무 아쉬웠음뇨
-
토요일까지는 항상 괜찮은데 일요일이면 편두통?이 있는거 같은데 병원을...
감도 꽤 센스있게 써먹어야 되네요
보통 그정도 센스가 올라오면 자연히 감이 오죠
진짜 잘읽었습니다
감사합니다
저 문제는 (-inf, 5)여도 답이 똑같은데 외관상 난이도 낮추려고 저런거같음
안정적인 대?칭의 형태
사실 수능 수학뿐아니라 수학자체가 일단 이럴거같은데? 하는 감과 엄밀한 증명의 조합이긴하죠
사실 감이라는게 발견적 추론에 의해 가설 설정하기인데 너무 배척받는 것 같긴 합니다.
'수학적 나락방지센서' 좋은 표현이네요 ㅋㅋㅋㅋ