[자작문제 해설+칼럼] 다항함수 개형추론 문제 풀이법
게시글 주소: https://orbi.kr/00072284634
안녕하세요 "현역 물2러"입니다
이번에는 저번에 올린 자작문제 풀이와, 이와 관련되어 다항함수 개형 추론 문제의 풀이법 칼럼 올려볼게여
자 우선 문제를 살펴봅시다.. (깔끔하게 형식에 맞추어 편집. 타이핑 해주신 이웃집 뿡댕이님 감사해여ㅕㅕ!)
이렇게 보니까 풀이가 길어지긴 했는데, 계산이 복잡한건 전혀 아니었어요!!
이제부터 이 문제와 관련하여 개형추론 문제의 풀이법 칼럼을 쓸건데, 그전에
이 문제에서 배워가야 하는 5가지를 소개하고 칼럼으로 넘어가보겠습니다!
1. 복잡한 절댓값 해석
이 문제가 어려워보이는 가장 큰 이유라고 생각합니다.
하지만 절댓값같은 경우에 x의 범위를 나누거나, 그래프를 접는 것으로 해석하면
지워질 것은 다 지워지고 깔끔하게 알맹이만 남겨놓을수가 있습니다!
혹시 너무 복잡하여 잘 안보인다, 하시면 이 문제의 풀이와 같이 새로운 함수를 정의하여
소재를 파악하는 것이 도움이 많이 됩니다..
2. 조건제시법으로 정의된 집합 해석하기
이 문제를 해석하는데 상당히 당황스럽게 한 부분이라고 생각됩니다
집합은 고1때 배우기에 꼼꼼히 공부하지 않는다는 것을 겨냥하여 넣은 요소입니다
집합의 조건이 복잡해지면 복잡해질수록 변수가 많아져서 해석하기가 까다로운데요,
저같은 경우는, "국어의 비문학을 푼다" 라는 마음가짐으로 집합을 해석하는 것을 추천해요!
천천히, 그리고 설정된 변수와 상수를 구분해가며 순서대로 해석해 나가는 것만이 제대로
집합을 해석한 것이고 그래야만 답도 바르게 구할 수 있답니다
이 문제도 변수와 상수가 적절히 사용되어 집합 해석을 못하신 분이라면 1번을 해결했다 하더라도
이 문제를 못푸셨을 겁니다.
3. 정수조건 이용
마지막 답을 구할 때 크리티컬하게 작용한 요소입니다.
어떤 문제던, 정수나 자연수 조건이 제시된다면 그 문제에서 그 조건이 안쓰인다 하더라도
기억하고 의식하고 문제를 푸는 습관을 들여야 합니다
대부분의 경우에는 정수 조건을 이용해야 답이 나오기 때문이죠!
이와 비슷하게, 로그가 나오면 항상 진수조건(정의역)을 의식해야 합니다
4. 임의의 축 기준 우함수.기함수
이건 제가 예전에도 올린적이 있었는데, 그 발상에 착안하여 이 문제에 녹여봤어요
사실 우함수, 기함수 따지는 것은 미적분에서 굉장히 중요합니다!!
물론 일반적인 우함수.기함수도 볼줄 알아야 하지만, 지금처럼 특정 축, 특정 점 기준으로
우함수, 기함수를 판단하고 그에 맞게 식을 세우는 능력도 필요합니다! 꼭 연습해두세요
5. 가장 중요한거 이건 따로 빼서 칼럼으로 적을게요
<짧칼럼>
삼.사차함수의 개형 추론 문제
사실 이 문제의 키포인트였습니다..
위에 나온 풀이의 2/3 이상이 실제로 개형 추론에 관한 얘기였기도 하고요.
실제 이 문제를 풀 때 가장 많은 시간이 소요되는 부분도 개형 추론이에요
대부분의 개형추론 문제는 보통 이런식으로 매우 까다롭게 나오곤 합니다
하지만 동시에 대부분의 수험생들도 이런 문제의 일관된 풀이를 모르죠.
아마 대부분은 "아 특수라고ㅋㅋㅋ" 하며 신나게 풀겁니다.
그리고 "아 나 다항함수 개형추론 ㄱ잘하네ㅋㅋ" 이럴겁니다
어림도 없는 소리
더구나 요즘들어 평가원도 이런 기조를 인식하고 있는지 이를 저격하는 문제들이
슬슬 등장하고 있죠.
이런 문제들에도 흔들리지 않고 바르게 개형 추론을 할 수 있는 방법이 있습니다.
먼저, 크게 케이스를 나눕니다
위 문제같은 경우에는 f(0)이 0인지 아닌지, 그리고 f'(0)이 0인지 아닌지가 관건이였어요
그렇게 분류한 이유는 x=0 기준으로 함수가 뒤집히고, 0일때와 0이 아닐 때 함수의 연속성이 달라지기
때문에, 또 f'(0)이 0일때와 0이 아닐때를 기준으로 함수의 미분가능성이 달라지기 때문에 그렇게 기준을
잡은거지요..
즉, 주어진 상황에서 뭔가가 달라지는 경계값을 기준으로 케이스 분류 하시면 됩니다
두번째로, 무조건 일반적인 경우부터 작게 그려보세요
물론 그게 답이 아니겠죠
하지만 조건들을 찬찬히 살펴보면서 아 이건 이래서 조건을 위배하네?
이걸 만족시키기 위해서는 이렇게 바꾸면 되겠구나
의 사고방식을 따라가세요(저 위에 풀이의 파란색 글씨들에 해당합니다.)
그래야만 특수가 정답이 아닐때에도 헤메지 않고 일관되게 개형을 추론할 수 있어요!!
혹자는 특수에서 일반으로 가나, 일반에서 특수로 가나 별 차이 없는데 많이 나오는
특수 먼저 하는게 장땡 아냐? 똑같이 일반일 때에는 특수에서 일반으로 바꾸면 되잖아
라고 말할수도 있을겁니다.
하지만, 특수에서 일반으로 넓히는 것과 일반에서 특수로 좁히는것 사이에는 엄청난 차이가 있어요!!
제가 주장하는 일반에서 특수로 좁히는 것은 조건을 해석하면서 그즉시 함수를 수정하고 특정할수 있지만
특수에서 일반으로 넘어가려면 어떤 방향으로 넓혀야 하는지, 그리고 이게 맞는지, 확신이 안서면서
경우의 수도 비약적으로 많아지기 때문에 우연히 경우를 찾고 넘어가더라도 매우 찝찝합니다
따라서, 함수 개형 특정 문제에서는 귀찮더라도, 시간 몇분 더 쓰더라도 일반적 케이스부터 그려서 판단해주세요!!
연습문항 2개(기출)만 남겨두고 마무리 짓겠습니다
두 문제 모두 유명한 킬러 기출들 입니다
함수 추론 과정에서 제가 제시한 논리대로 한번 더 풀어보세요
시간이 꽤 걸리더라도 제대로 풀었다 라는 느낌이 들 것입니다
그럼 저는 이쯤해서 마무리 지어보도록 할께요
궁금한거(아무거나!) 있으면 댓글로 달아주시고
좋아요 한번씩 눌러주시면 제게 큰 힘이 됩니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
위장이 뒤틀리는 느낌 작년까지만 해도 몸이 튼튼했었는데 나도 나이를 먹었나봐
-
일반고 내신 1학년 내신 3.6 고2입니다. 생기부는 평범한 일반고 생기부로, 분량...
-
대학 붙었는데도 학교 안 가고 그냥 아무것도 안 하니까 인생이 망가져가고 있는 거...
-
인증메타였어? 1
그런건 일찍일찍 시작해야지
-
고졸이나 전문대졸에 대해서 엄청 안좋게봄 이 사이트가 나는 그냥 별 생각 없름
-
도망쳐
-
얼버기 0
부지런행
-
낄낄낄 4
1교시 ㅋㅋㅋ
-
먼저 잡아먹힌다
-
넵
-
공부 해야하니깐 이제 옷에 돈 안 씀ㅇㅇ(엄카제외)
-
벌써 수요일이라니.
-
오늘도 무휴반 0
가보자고
-
배송 완료 돼있댔는데 문 앞에 없음 주소 잘 찍었음 이럼 어떡함??
-
얼버기 0
민나 오하요
-
얼버기 0
아흑 개졸려 ㅜㅜ
-
다른 과목이랑 달리 모든 사람들이 어느 정도 다 잘하니까 1등급으로 가는게 너무 빡셈
-
윫하 0
-
심화엔제중에서요
-
쌓인 화가 많으니 사소한 일들에도 열이 뻗치지 에혀..
-
이젠 괜찮은데 0
사랑따윈 저버렸는데
-
작년 고3 10월 공시인데 지금은 절대 못함 어떻게 9시에 자고 4시에 일어나서...
-
23회 - 86분 100 전 어려웠음 24회 - 77분 100 이것도 어려운편..같은데
-
안녕 2
좋은 아침이야
-
앞으로는 걍 당하면 바로 차단부터 박아야겠다
-
36cm²마다 두개씩박혀있음 디지게맵네
-
(예고) 1
오전 10시에 업로드 예정 많관부
-
너무귀여움
-
경기 결과는 예상이 가는데
-
D-225 0
영어단어 영단어장 day 2(80단어) 추가 표제어 암기 국어 내신 범위...
-
성적 오엠알 돌린거 오늘 나눠줫는데 국수영탐 12111인디 표점?으로 등수매긴거...
-
또잠시간놓침
-
눈도 건조하고 미치겠네잉
-
잠이 안오는거구나
-
내 생일이 17일이여서
-
ㅇㅇ?
-
스튜디오지브리/너의 이름은/초속 5센티미터 /짱국 극장판...
-
진짜 잡니다 2
하 7시일어나야하는데 수행도 있고 몸은 아프고 정신도 왔다갔다 하고 에휴
-
그래서 지금은 작년에 리트 풀다 남은거 끄적이는 중인디 앞으로도 걍 강의 거의...
-
취르비 질받 0
사실 한병이라 거의 안취함
-
무물보 받아요 2
일하느라 잠못자는중
-
차단한 사람이 탈릅하면 차단이 해제돼서 그 사람이 썼던 글들이 다 보인다
-
현역 74347 입니다(화작 미적 지1 물2) (물2는 가오용) 시립 경희 홍익...
-
인생을 살아 제발
-
역시 알바는 2
내가 일 잘하는 것도 중요한데 좋은 사장님 만나는 것도 중요한듯
-
음식 자주 끼네 님들은 평소에 양치 잘 하셈
-
한 10개 남았는데 완결까지 극장판을 봐서 결말을 아니까 슬픔
-
야!!!!!! 17
자작문제에서 물2의 향기가
극한 꼴이 그 1단원에 평형 맞추는 시소 닮음
이런 생각은 대체 어떻게 하신 거죠 ㅋㅋㅋㅋㅋㅋㅋ
ㅠㅠ 고마워ㅓ요 저거 넘나 어려워써
강기원식 풀이: 되는 그래프 한개 그려놓고 밑에
"쉽게 알 수 있다, 이 개형이 떠오르지 않을 리 없다"
적은 다음 (ㅈㅅ) 적고 풀이 끝내기

헉개추랑 스크랩 모조리 핻따 키킼

기준 잡는 거랑 일반적인 거부터 개형 추론 하는 습관 길러두도록 할게ㅇ ㅛ 감삼당
넹! 화이팅!!좋아요 꾸욱
감사합니다

옙!