미적하시는분들 이 문제 어케 생각함뇨
게시글 주소: https://orbi.kr/00072269907
맨 처음에 최소 조건을 3등급?정도 친구한테 설명한다고 했을 때
거리공식을 통한 루트 미분과 수직을 이용한 풀이
사실 뭐 둘 다 똑같은거긴한데 ,,
걍 루트 미분으로 알려주고 이러한 상황에서는 수작일때 최소가 된다라고 추가로 알려주는게 좋을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능날 내 상태 5
컨디션 1년 통틀어 최상 근데 성적은 1년 통틀어 최하
-
그래프 추론, 귀납수열에 강하고 식작성, 식조작, 극한 같은걸 잘 못합니다 약점...
-
그저 멀리서 바라만볼뿐
-
일요일 더현대 오면 저랑 스칠 수 있음
-
국영수 각 과목 1뜰 때마다 내 닉넴에서 과목 하나씩 뺄거임
-
8지선다형 문제 보면 5지선다형은 선녀 맞죠.jpg 3
2011년 53회 사법시험 1차 민법이거 보고 든 생각이 "수능도 8지선다 문제가...
-
시 리얼 ㅋㅋㅋㅋㅋㅋㅋ
-
짝사랑 딱 두번 11
이성으로서 누군가를 좋아한적도 딱 두번
-
신에게 빌고 싶을때가 자주있음 내 선택이 옳았기를 간절히 비는 순간
-
전날에 오르비 13시간 조지고 피곤해서 아침에 가서 국어 시작전까지 수면취하기 국어...
-
팔걸 이 의자 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
3월 둘째주 밥약을..
-
니들이 짝사랑을 아냐 13
5년은 해야 짝사랑이지
-
뉴런vs아이디어 0
수분감 수1.2 끝냈는데 뭐 듣는게 나을까요? 뉴런이랑 아이디어 각각 수강 대상자...
-
01 02 03 다 좋아해봤다
-
전여친 스토리 봤는데 10
왜 이렇게 이쁘지
-
나임 금품갈취조차 못봄 근데 내가 주위에 관심이 없어서 그럴수도...
-
옮만추하면 쪽팔리긴함 14
내가 왜 얘랑 만나야하지? 라는 나쁜 말은 ㄴㄴ
-
ㅋㅋㅋㅋㅋㅋ 왜? 원초적 질문
-
아 자살말리노 0
ㅜㅠㅠ
-
기습맞팔구 10
제발 해주세요 무시하고 넘어가면 꿈에 갇혀서 강기분 완강해야 나올수있음
-
중에서 뭐 먼저할까요 하나만 한다면 뭐할까여 ㅔ
-
진짜 ㅈㄴ 예뻤다 나보다 나이는 많으셨음(본인 자퇴생) 눈 ㅈㄴ 마주쳤었고 번호 딸...
-
문과 기준 평백 어느정도면 감? 과는 아예 신경 안씀
-
현역 수능 평균 4등급 맞고 재수중인 재수생입니다 작년 생1지1 선택 을 했었고...
-
사업의 꿈 2
sky공 나와도 사업으로 성공하는 경우 요즘엔 거의 없겠지?
-
깡표 의대 2
과탐 깡표점 의대 어디어디있나요?
-
[칼럼] 부자 되고 싶은데, MBTI가 P인 사람 잘 봐! 8
안녕하세요 한방국어 조은우입니다. 어제도 고생 많았습니다. 오늘도 고생 많았습니다....
-
예상댓글:응 팔취
-
국어 푸는데 시험지 넘기는 소리 진짜 너무 시끄럽던데 귀이개 안 끼면 집중이 안...
-
공통,미적반 다 듣는거 어케 생각? 작수 백분위 88
-
옯만추 재밌음 13
-
https://orbi.kr/00072256981 쪽지로 해설 요청도 왔고 맞추신...
-
ㅈㄴ 안 맞는다 그냥 하..ㅅㅂ!!!!
-
보건증 제발! 9
삼일만에 되는데 없냐요 보건협회에서 하면 3일이라는데 하필 토요일 월요일이 공휴일이라 ㄱ빡침
-
집모 맨날 3-4 현장 교육청 평가원 1-2
-
속이 부대끼네
-
통학러고 여유롭게 잡아서 편도 1시간 반정도 걸립니다 파란색 동그라미 쳐놓은건...
-
뭘까 흐흐 물1 역에보 화1 양적관계 생1 유전 지1 천체 물2 2차원운동 화2...
-
너무 마이너한가 ㅠㅠ
-
수능 현장과 다르게 너무 잘 읽히고 다 맞춤 뭐가 문제였을까?
-
왜냐면 사문정법 응시함
-
2019 kmo 고등부 1차 (오일러) 문제 평가원?화 2
ㅈㄱㄴ 문제는 제가 만든 게 아닙니다. kmo 시험지를 형식만 살짝 바꾼거예요.
-
김준쌤 듣다가 하나도 몰겟어서 방치하다 최근에 정훈구쌤으로 다시 듣고잇거든요…...
-
혹시 이거보다 더한 오르비 사건사고들 있으면 댓 ㄱㄱ
-
폰 맨날 끼고있는거 아닌가요? 문제 질문에 답을 못해주는건 이해하는데 몇시간 넘게...
-
두 번째 선생님인데 이번에도 연락을 안 보시네..
-
ㅇㅈ 3
수직일때 최소인건 너무 당연한거라 근데
그러게요 근데 이거 모르는 애들 많음..
라그랑주 승수법의 아이디어
이거 수1특강에서 들은거같은데
존나당연한 기하학을해보라고...그랬던거같은데
미적반에서도 했자나요
그래요? 제가 한번 빠졌어서 그날했나봐요
첨풀땐 루트로 풀긴햇는데 수직거리최소는 무조건 알아야죠
오케이
미분으로 알려줬다가 잘못하면
수식의 괴물이 될수도
근데 수식 풀이가 그렇게 길진않아서 ㅋㅋㅋ
원하고 접한다 -> 이게 젤 개연성잇는 풀이아닐가요
그쵸 저는 루트 미분이 젤 익숙하고 ?
개연성은 원하고 접한다고 하는게 젤 굿인듯
당연한걸 당연하게 받아들이자
흐으음
점과 곡선 최소는 원을 도입하면 납득하기 쉬움요
저도 그렇게 배움뇨
원도입해서 설명해주시면 될듯
루트미분은 좀 별로같음?
수식풀이는 좀 별룬가
ㅖ
현우진이 원으로 풀던데
t를 일ㄹ리 움직이며ㅜ관찰
수직일때 최소 개념 알려주시는게 좋을듯
작년 3모 13번인가 그 문제에서도 쓰였는데 그때까지 모르고 있다가 저때 알았어서,,
알아두면 확실히 좋을거 같음
라그랑주 승수
'141129'
수직일때 알려주는거좋지.
기출에도 있던거같은데 14학년ㄴ도기출이었나
루트 안의 식이 최소이면 루트값도 최소이다
이런건 알려주면 좋음.
수직은 직관아니긴 함 피타고라스 공식 안에꺼 미분하면 법선인가 나와서..
직관적으로 보인다는거죠
루트미분이 그거 증명이고
140630설명할때 연계해서 해주면 딱좋음 얘가 원조니까
점 (t, 0)과 점 (x, f(x)) 사이의 거리를 x에 대한 함수로 나타낸 후 미분해서 언제 최소가 되는지 살펴보는 것이 가장 직관적인 풀이... 따라서 이것을 먼저 다루도록 한 후에 어떤 점과 곡선 사이의 거리가 최소가 되는 상황 자체에 대해 살펴보도록 하여 계산을 줄일 수 있는 방법을 다룬다면 어떨지 (1406B30)
접한다의 관점을 알려주는 게 나을듯