-
국어 비문학 선호 vs 문학 선호 수학 그래프풀이 선호 vs 수식풀이 선호 영어...
-
무휴반 가능성 0
연고 문과 1학기는 다니고 종강하고 부터 12학점 무휴반으로 설경갈만할까요 아님...
-
저녁에
-
수의 2
건너건너 들은 것인데 정말 인의, 수의 차이가 있다는 게 신기하다. 가령 인의는...
-
대성 환급 등록금 납부 증명 목적으로 재학증명서 써도 되겠지? 0
등록금을 납부했으니까 재학 중이겠지 아닌가? 영수증 발급 날짜가 지나서 이거 안되면 안되는데
-
구단에서 예시도 안준다
-
주 2회 수업합니다. 근데 한달(8회)동안 빠지는 횟수가 매달 3-4회 정도...
-
탁구 보면서 힘 많이 받았는데 힘 더 내라고 샌드위치까지....
-
2호선 xx 2
Xxxxxxxx
-
[속보] 전북, 서울 제치고 2036 올림픽 유치 후보 도시 선정 5
[속보] 전북, 서울 제치고 2036 올림픽 유치 후보 도시 선정
-
이걸 모르면 몇수를 해도 수학실력은 제자리걸음이 됩니다 그래프와 수식은 새의 양...
-
어디가 나음?
-
Tim 질문좀요 2
Tim 모의고사 7회분 이랑 Hustle test 모의고사 7회분 전부...
-
수(상)하이엔드…이거 중3 때 3회독하고 고1,2 학평 백분위 고정 99나옴(한...
-
ㅈㄱㄴ
-
sparkling daydream(중2병이라도 사랑이 하고 싶어 OP) 99점...
-
기하 원솔멀텍하고있는데 문제가 너무 적은것같아서요 한단원에 50문제정도밖에...
-
2면 많은편임? 주 12시간이라 주휴수당안됨
-
난 비릿한 냄새가 나는거같음 이런걸 밤꽃냄새라하나
-
3순환 강의 1
3순환 1, 2 강의가 두개인가요 아니면 1개인가요?
-
등한시 하는 지금도 학교에서 정치 이야기 ㅈㄴ하는데 그거 풀어버리면 난 몰겠다
-
학원 전액 장학금 받고 삼수 vs 인하대 간호 다니기 3
서초메가에서 전액장학금으로 다닐 수 있는 성적인데 삼수를 해볼까요?? 아니면 그냥...
-
제발..하..
-
저는 작수에서 화작 미적 영어 동사 세사 45444 를 받았는데요 제가 6월 말...
-
누구 들을까요 김범준은 인강 듣고 있는데 이동준이나 김성호쌤은 현강 들을 수...
-
김준t 크포랑 코드넘버 교재패스로 구매하고 싶은데 교재패스 들어가면 신청항목에 이미...
-
되게 잘생겨서 연예인인줄 알앗는데
-
전형적인 허수 맞습니다 삼각함수 도형 극한, 무등비 프랙탈 공부하시나요? 의견주세용
-
대치 시데는 의대급이라고 들었고 스투나 목시도 치대이상이라고 들었는데 강대의대관이나...
-
7시20 기상 8:30 재수학원 도착 후 30분정도 그날할거 생각하고 자리치우고...
-
진짜 기하해야하나 12
공부량에 비해 표점 개꿀인 거 같은데 어짜피 적백은 불가능하고..흠
-
아 수능 개잘봤다 어 근데 제2외가 왜이러지… 설경 될거같은데 뭔가 쫄리네 농경제로...
-
국어 공부 질문 1
현재 고3인데 모고는 12학년 때는 전부 1이였고 작수 집에서 풀어봤을때는 원점수...
-
고3 재학생반 들어가려고 합니다. 중간고사 대비기간에 집중관리를 해준다는데, 무슨...
-
중앙대 솔직히 9
경희대랑 시립대랑 동급임?
-
설경이랑 성균관대 약대 24
지금 경제 사문으로 수능 볼건데 백분위 96 96 1 99 97 맞으면 성대 약대도...
-
진짠가? 일반적으로 저런 예시를 힘들게 들어주지 않을텐데 좀 신기하네 ㅋㅋㅋ
-
강의에서 짜자잔~하고 보여주는 풀이가 더 비효율적인거일수도 있기 때문 그런 경우 그...
-
나가기ㅠ싫어 7
난아직준비가안됐단말이다
-
요새 느끼는게 7
사회적으로 민감하다는 이유로 학교에서 정치 교육을 등한시하니까 오히려 학생들이...
-
맨 처음에 최소 조건을 3등급?정도 친구한테 설명한다고 했을 때거리공식을 통한 루트...
-
누가 144 넘어가면 체감 안된다고함? 근데 게임 켜면 컴퓨터가 죽으려고 해요
-
어디까지 인서울임? 15
국숭세단?
-
알바가는중 6
눈누난나
-
여르비쪽지줘 3
진짜만줘라
-
멜론먹고싶다 3
먹고싶은데 어케먹지 마트가야되나
-
1학년,2학년때 진로 희망을 동물보건사라고 적었는데 간호학과나 물리치료학과로...
근데 0.9999999999.....가 실수인가? 1로 수렴하는 상태(리미트를 벗기지 않은)아닌가?
수학 고수분들 도움좀...
나두 유튜브 쇼츠 본 기억으로 한 거라 잘 모르게씀... 근데 애초 1ㄹ로 수렴이라는 게 1이랑 똑같은 말 아님?

흠....아직 계산되지 않은 상태이니 무한대같은 느낌으로 봐야하지 않나https://youtube.com/shorts/fwYerxS8VY0?si=7aLBw4tQzFSxX9E2
이거 본 기억으로 했음...

아 이 분 ㅋㅋㅋ영상보니 결론이 실수의 조밀성 때문에
0.999...과 1사이 들어가는 수가 없으므로 실수가 아닌 것 이라고 설명하는것 같네요..
제가 잘 이해한것인진 잘 모르겠습니다.
수렴하는 상태의 수 같은 건 없습니다
0.999•••는 그냥 1입니다
이 문제가 저렇게까지 해야 풀리나여..?
그냥 임의의 f(x) 잡고 풀면 풀리긴 하는 거 같은데
뭔가 좀 더 엄밀한 풀이를 알고 싶어서요
실수의 완비성을 굳이 왜 끌고 와야하는지는 잘 모르겠습니다. 그리고 무한 소수는 결정되지 않은 상태가 아니라 이미 그 자체로 “수(number)"입니다. 0.999••• 같은 경우도 1이라는 수의 또 다른 표현으로 취급해야 마땅합니다.
그냥 별 거 안 해도 됩니다.
함수 h의 point a에서의 value를 g(a+)xg(a+2+)로 이해하고 h를 construct 하면 됩니다. 이중극한을 씌울 생각을 하는 것보다 h에 대한 이미지를 먼저 잡아놓는 게 편합니다. 애초에 f가 임의의 다항함수인지라 우극한이 존재하지 않을 일은 없고.. (교육과정에서 다루는 것부터가 아니긴 하지만) 심지어는 그냥 직선으로 박아놓고 풀어도 무방합니다.
내가 한 거 맞는 거 같음
그런데 다만 이해 안 가는 부분 두 가지가,
1. 0+가 실수가 아닌 건 알겠는데 정확히 뭔지 모르겠음
수가 아니라 현상? 기호? 뭐 그런 걸로 받아들여야 함?
2. 그리고 수렴값으로 가져왔다는 표현도 이해 못 하겠음
요거
나는 머 걍 일개 대학생이니..알아서 걸러들으삼
1. 걍 허수처럼 실수와 다른 수체계로
받아들여도 될거같음.
실수와는 연산 성질이 다른 ㅇㅇ
lim 안에서만 존재할 수 있고
밖에서는 존재할 수 없음
진짜 너무 궁금하면 엡실론 델타 논법을 공부해보셈..절대 권장은 모타겟슴
2.
1에서 말한 것처럼
lim 안에서만 존재할 수 있는 수체계를
밖으로 가져올 수 없다
요런 말임

ㄱㅅㄱㅅ