[하드워커 생1 칼럼] 무시
게시글 주소: https://orbi.kr/00072197585
안녕하세요, 생명과학 I 과목을 가르치는 하드워커입니다.
‘여러 가지 유전’ 단원(‘유전 현상’, ‘형질 교배’ 등으로도 불리는 단원)에서 쓰이는 잡스킬 4가지를 설명해드리기로 했는데요, 그 중
1. 이형 염색체 논리
에 대해서는 지난번에 설명했으니 궁금하신 분들은 다음 링크를 참조해주세요!
오늘은 잡스킬
2. 무시
에 대해 설명해보도록 하겠습니다.
지난번과 마찬가지로 제 교재 내용을 붙여넣고, 설명할 부분이 있으면 추가로 해보겠습니다.
“연관 중 일부의 유전자형이나 표현형이 하나로 고정되어서 나올 때, 표현형 가짓수나 확률 계산 시 이를 무시하고 계산할 수 있다.”
‘고정’되어서 나온다는 것이 포인트입니다. 어차피 연관 중 일부의 유전자형이나 표현형이 고정되어서 나오는데, 연관 전체를 전부 다 고려하면서 문제를 풀 필요가 없다는 것이죠. 이를 ‘무시’라고 표현합니다. 예를 들어 보겠습니다.
“예를 들어서 사람의 상염색체 유전 형질 (가) A = a, (나) B > b 가 있을 때, 다음과 같이 연관을 독립처럼 처리할 수 있다.
와
사이에서 나올 수 있는 표현형의 가짓수 = Bb와 Bb 사이에서 나올 수 있는 표현형의 가짓수
(㉠)와
사이에서 나온 자손의 표현형이 ㉠과 같을 확률 = Aa와 Aa 사이에서 나온 자손의 표현형이 ㉠과 같을 확률”
첫 번째 예시에서, (가)에 대해서는 어차피 Aa만 나오니까, 표현형 가짓수를 셀 때 (가)의 유전자는 고려하지 않아도 됩니다. 또한 두 번째 예시에서, (나)에 대해서는 어차피 우성만 나오고, ㉠은 (나)에 대해서 우성이니까, 확률을 구할 때 (나)의 유전자는 고려하지 않아도 됩니다.
이러한 과정을 거쳐서 “연관을 독립처럼”(또는 경우에 따라서는 3연관을 2연관처럼) 생각하면서 풀 수 있습니다. 이는 문제 조건 처리에 큰 도움을 줍니다.
“단, 확률의 경우 1로 고정되어 무시될 수도 있지만, 확률 자체가 0이 되는 경우도 있음에 주의해야 한다.”
예를 들어 위의 2번째 예시에서, 표현형이 ㉠과 같을 확률이 아닌, 표현형이 (가)에 대해서 Aa이고 (나)에 대해서 열성일 확률을 물었다면, 이 경우 확률은 ‘1로 고정되어 무시’되는 것이 아니라, 그냥 0이 됩니다. 가끔 이런 경우가 있으니 조심해야 합니다.
이제 연습을 한 번 해보겠습니다.
ex) 사람의 상염색체 유전 형질 (가) A = a, (나) B > b, (다) H/h, R/r, T/t 다인자(대문자 수=표현형)가 있다.
아빠가 Aa, ,
이고, 엄마가 aa,
,
일 때, 자손에게서 나타날 수 있는 (가)~(다)의 표현형의 최대 가짓수와, 자손의 (가)~(다)의 표현형이 엄마와 같을 확률을 구하시오.
포인트는 엄마가 BB이므로, (나)에 대해서는 우성만 나온다는 것입니다. 이 문제처럼 ‘단일인자+다인자 연관 형태(복합 다인자 문제 형태)’에서는 단일 인자 연관과 다인자 연관을 동시에 고려하면서 문제를 풀어야 하지만, 이 문제에서는 (나)의 표현형이 우성만 나오게 되면서, 표현형 가짓수를 구할 때 영향을 끼치지 않게 됩니다. 즉, (나)를 무시할 수 있고, 복합 다인자가 아니라 순수 다인자 형태로 문제를 풀 수 있습니다.
자손에게서 나타날 수 있는 (가)의 표현형은 당연히 2가지입니다. (나)와 (다)의 표현형 가짓수를 셀 때는, 다인자만 고려하면 됩니다. 아빠가 1|0, 1|1 이고 엄마가 1|0, 2|1 이므로, 자손 표현형은 4가지가 나옵니다. 따라서 자손에게서 나타날 수 있는 (가)~(다)의 표현형은 최대 8가지입니다.
확률을 구할 때도 마찬가지입니다. 엄마는 어차피 (나)에 대해서 우성이니까 (나)의 표현형이 엄마와 같을 확률은 ‘무시’해도 됩니다. 즉 (가)의 표현형이 엄마와 같을 확률은 1/2, (다)의 표현형이 엄마와 같을 확률은 3/8이므로 구하는 확률은 3/16이 됩니다.
‘무시’는 제가 소개하는 4개의 잡스킬 중 가장 쉬우면서, 가장 범용성 있는 내용입니다. 그만큼 많은 강사/학생들에게도 잘 알려져 있는 내용이지만, 잘 모르셨던 분들은 잘 배워가시면 문제 조건의 해석이나 계산에 도움이 될 겁니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
힘내라 샤미코
-
동경소녀 3
-
방학 동안 거의 놀기만 해서 특수상대성이론? 전까지만 개념 나갔는데 나간데까지...
-
삼각함수 그래프 공부하는데 대칭성이랑 이런거 찾는게 넘 힘드네요
-
뭘 해도 의욕이 없고 시간은 그냥 허무하게 낭비해버리고 다른 사람들은 다 자기 목표...
-
내적친밀감 69배
-
옯찐따는 나다 0
여기서마저 찐따 담당 휴
-
퇴근하는중! 0
진짜힘든하루엿다
-
지수로그함수도 할만하고 수학적 귀납법도 23학년도까진 푸는 맛이 있었음 수2는...
-
자취방 cctv보니까 침대에서 뭐 전기폭발한것같은데 2
지혼자 번쩍거리는대 뭐임
-
아이고 대가리야
-
아까 너무 무리함
-
바이오캠 학과 소속으로 서울로만 수강신청해서 설캠으로 전과하는 빌드가 있다고...
-
시대 과탐 기출 1
시대 기출 과탐은 어떤가요? 수학은 말 많던데 과탐은 딱히 말이 없어서 이제 중고로...
-
멍청한 걸 수도 있는데 공부할 줄 몰라서 삽질하는 거일수도 있음 그게 멍청한건가
-
이문제도… 0
풀이라 매끄럽게 연결되질 못함.. 등가속도쪽이 부족해서그런가.. 수학은 차근차근...
-
비틱안하겠습니다 0
지구 복영좀 보고 돌아올게용 12시에봐용
-
현역고3 학교 3
이제 고3입학하는 현역정시생입니다! 몇몇글 찾아보니까 학교 무단조퇴하고 독서실가거나...
-
어떻게 해볼까란 뜻은 아니야 그냥 심심해서 그래 아니 외로워서 그래..
감사합니다:)
감사합니다!