Inversion -(1)
게시글 주소: https://orbi.kr/00072197336
반전에 대해 배워봅시다ㅏ.
1. Cline.
일반화된 원이라고도 부르고, 원과 직선을 다같이 부르는걸 Cline이라고 합니다.
직선을 반지름이 무한인 원으로 보는게 아이디어입니다. (또는 곡률이 0인 원)
2. 무한원점.
평면에 특별한 점 무한원점을 추가합니다.
모든 일반 직선은 무한원점을 지나고, 모든 원은 무한원점을 지나지 못합니다.
이런 점이 어케 존재할 수 잇는지는 궁금해하지 않는게 좋습니다,
정 궁금하시면 Inversion 관련해서 영문 위키피디아를 돌아다니시면 됩니다. (Inversive Geometry)
우리는 이 무한원점에서, 점 3개가 결정되면 Cline이 하나 결정됨을 알 수 잇습니다.
일반적인 3 점을 고르면 -> 원이 결정.
일반적인 2 점과 무한원점 1개를 고르면 -> 직선이 결정.
3. 반전변환.
이제 반전을 정의합시다.
반전변환에는 반전의 기준이 되는 반전원이 존재합니다. 중심이 O이고 반지름이 r인 원 w를 생각합시다.
이 때, 반직선 OA 위에 r^2=OA · OA*가 되게 하는 점 A*을
A의 원 w에 대한 반전점이라고 합니다.(즉, A*은 A를 w에 대해 반전시킨 점이다.)
몇가지 사실들을 알아봅시다.
1. 이 반전변환에서 원의 중심 O는 무한원점으로 가고, 무한원점은 O로 갑니다. (r^2/0=Inf, r^2/Inf=0)
2. 원 위의 점 A에 대해 A=A*임을 알 수 있습니다.
3. A*의 반전은 A임을 알 수 있습니다 즉, (A*)*=A
1편 끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
물2갤 입결봐라 ㄷㄷ 14
안씻은 보람이 있네 ㄹㅇ 멋있누
-
라면추천받습니다 9
ㅇㅖ
-
네 2
네감사합니다 아니요 괜찮아요ㅎㅎ
-
현우진 머리 3개 달린 사진 올려놓고 현평 ㅋㅋ 이러면 바로 고소미 매쓰 출동시킬거같은데
-
질문 주세요
-
수면 부족땜에 그런가
-
노략의 방향을 정하면서 이때까지의 옳지못한 방향을 보며 현타오는데 그냥 존@나...
-
오펜하이머 3
오팬무?
-
이게 설의인가 7
멀엇네
-
선착2
-
뒤늦은 메타 탑승 16
95 남르비에요..
-
난이걸진짜보실줄몰랐지 아 부끄러…
-
높은 대학이 아니더라도 충분히 만족하는 사람도 있고 높은 대학이더라도 아쉬움을...
-
해볼까말까해볼까말까 이러다가 돌아올 수 없는 강을 건너면 어캄?
-
한줄요약 : 강민철 커리 3년 듣고 수능 전에 멘탈 깨져서 2등급, 올해는 김승리...
-
떴으니까 올리지 ㅋㅋ
-
대성 환급 등록금 납부 증명 목적으로 재학증명서 써도 되겠지? 0
등록금을 납부했으니까 재학 중이겠지 아닌가? 영수증 발급 날짜가 지나서 이거 안되면 안되는데
-
꺼드럭꺼드럭 2
분캠이라도 가고 싶네요
와
무한원점이 뭐하는애임
걍 무한히 멀리잇는 점임? 직선이 지나는
Steregraphic projection 검색
오랜만에 들어보네 ㅋㅋ
이게뭐야그냥눈덩이던지면되는거죠?
이 반전변환에서 원의 중심 O는 무한원점으로 가고, 무한원점은 O로 갑니다. (r^2/0=Inf, r^2/Inf=0)
이게 이해가 안감
"간다"는게
멀 변화시킨다는거임?
걍 O를 반전시키면 무한원점이 된다는거임
오호
개쩌네
독해력 이슈엿네
방드가서 찾아봐야겟다..
아ㅏㅏ 5분봤는데 이해못함 물리나 해야지