Inversion -(1)
게시글 주소: https://orbi.kr/00072197336
반전에 대해 배워봅시다ㅏ.
1. Cline.
일반화된 원이라고도 부르고, 원과 직선을 다같이 부르는걸 Cline이라고 합니다.
직선을 반지름이 무한인 원으로 보는게 아이디어입니다. (또는 곡률이 0인 원)
2. 무한원점.
평면에 특별한 점 무한원점을 추가합니다.
모든 일반 직선은 무한원점을 지나고, 모든 원은 무한원점을 지나지 못합니다.
이런 점이 어케 존재할 수 잇는지는 궁금해하지 않는게 좋습니다,
정 궁금하시면 Inversion 관련해서 영문 위키피디아를 돌아다니시면 됩니다. (Inversive Geometry)
우리는 이 무한원점에서, 점 3개가 결정되면 Cline이 하나 결정됨을 알 수 잇습니다.
일반적인 3 점을 고르면 -> 원이 결정.
일반적인 2 점과 무한원점 1개를 고르면 -> 직선이 결정.
3. 반전변환.
이제 반전을 정의합시다.
반전변환에는 반전의 기준이 되는 반전원이 존재합니다. 중심이 O이고 반지름이 r인 원 w를 생각합시다.
이 때, 반직선 OA 위에 r^2=OA · OA*가 되게 하는 점 A*을
A의 원 w에 대한 반전점이라고 합니다.(즉, A*은 A를 w에 대해 반전시킨 점이다.)
몇가지 사실들을 알아봅시다.
1. 이 반전변환에서 원의 중심 O는 무한원점으로 가고, 무한원점은 O로 갑니다. (r^2/0=Inf, r^2/Inf=0)
2. 원 위의 점 A에 대해 A=A*임을 알 수 있습니다.
3. A*의 반전은 A임을 알 수 있습니다 즉, (A*)*=A
1편 끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인생 조언좀 해주세요 10
제가 1년 반 전쯤에 흑역사가 있었는데 그때 꽤 큰 사건이어서 학교에서도 다 소문...
-
과외 2개에 카페 알바 어떰 바리스타 자격증 있을 만큼 커피 좋아함...
-
쌤 덕에 수능 나쁘지 않게 쳤어요
-
본인 근황 8
ㅎㅎㅎ
-
학벌은 높은 편인데 지방이라서 한번도 시도해본적 없는데 애들이 하도 이 학벌로 이...
-
ㅈㄱㄴ
-
사수 노베라 공부하느라 바쁘구만
-
레몬은 동물이다
-
사실맥주아니어도됨 추천좀
-
의대아님안가는형 8
인증 보신분
-
ㅇㅈ 8
우리 학교 도서관에 있었음
-
나 근데 여자도 아님
-
얼버기 7
-
ㅋㅋㅋㅋㅋㅋㅋ
-
60키로때 ㅇㅈ 8
-
왜인증없어 7
노잼
-
쉬는시간 친목은 그러러니 하는데 제발 가오 좀 빼주세요 가래 그만 뱉고요
-
여태 공부하면서 수능문학만큼 좆같은적이없었다 고1때부터...
-
이걸로도 안되냐 시발 서럽다 ㅠㅠㅠㅠㅠㅠ
와
무한원점이 뭐하는애임
걍 무한히 멀리잇는 점임? 직선이 지나는
Steregraphic projection 검색
오랜만에 들어보네 ㅋㅋ
이게뭐야그냥눈덩이던지면되는거죠?
이 반전변환에서 원의 중심 O는 무한원점으로 가고, 무한원점은 O로 갑니다. (r^2/0=Inf, r^2/Inf=0)
이게 이해가 안감
"간다"는게
멀 변화시킨다는거임?
걍 O를 반전시키면 무한원점이 된다는거임
오호
개쩌네
독해력 이슈엿네
방드가서 찾아봐야겟다..
아ㅏㅏ 5분봤는데 이해못함 물리나 해야지