Inversion -(1)
게시글 주소: https://orbi.kr/00072197336
반전에 대해 배워봅시다ㅏ.
1. Cline.
일반화된 원이라고도 부르고, 원과 직선을 다같이 부르는걸 Cline이라고 합니다.
직선을 반지름이 무한인 원으로 보는게 아이디어입니다. (또는 곡률이 0인 원)
2. 무한원점.
평면에 특별한 점 무한원점을 추가합니다.
모든 일반 직선은 무한원점을 지나고, 모든 원은 무한원점을 지나지 못합니다.
이런 점이 어케 존재할 수 잇는지는 궁금해하지 않는게 좋습니다,
정 궁금하시면 Inversion 관련해서 영문 위키피디아를 돌아다니시면 됩니다. (Inversive Geometry)
우리는 이 무한원점에서, 점 3개가 결정되면 Cline이 하나 결정됨을 알 수 잇습니다.
일반적인 3 점을 고르면 -> 원이 결정.
일반적인 2 점과 무한원점 1개를 고르면 -> 직선이 결정.
3. 반전변환.
이제 반전을 정의합시다.
반전변환에는 반전의 기준이 되는 반전원이 존재합니다. 중심이 O이고 반지름이 r인 원 w를 생각합시다.
이 때, 반직선 OA 위에 r^2=OA · OA*가 되게 하는 점 A*을
A의 원 w에 대한 반전점이라고 합니다.(즉, A*은 A를 w에 대해 반전시킨 점이다.)
몇가지 사실들을 알아봅시다.
1. 이 반전변환에서 원의 중심 O는 무한원점으로 가고, 무한원점은 O로 갑니다. (r^2/0=Inf, r^2/Inf=0)
2. 원 위의 점 A에 대해 A=A*임을 알 수 있습니다.
3. A*의 반전은 A임을 알 수 있습니다 즉, (A*)*=A
1편 끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
감동이 있다
-
존예 ㅇㅈ 은 못 참지
-
오늘은 그런날입니다
-
전역 100일 남았는데 결국 전남친이랑 재회하고 마음이 좀 힘들어서 일상생활이 잘...
-
그만 맛잇어라
-
10시까지
-
다만 과년도 재탕이라 아쉽.. 하이엔드를 평생 11문제 밖에 못품
-
앙드레 말로 0
오랫동안 꿈을 그리는 사람은 마침내 그 꿈을 닮아간다
-
어디가 낫나용??
-
조선치 추가모집 8
12112면 넣어볼만 한가요?
-
평가원 입장에서 되게 잘낸 시험임 96에 2가 2칸인게 ㄹㅇ 개억까
-
케이스 필름이 뭐 테이프로도 안 떼지고 손톱으론 긁어지지도 않는데 다른 방법 있나요..
-
수1 기출 내신때 하고 한번 다시 봤는데 진짜 삼활은 퀄리티 지리네
-
오르비에서 유학 컨설팅을 진행한다면 얼마나 많은 수요가 있을지에 대한 시장수요...
-
여자친구 구함 4
잘해줄 자신 있음 귀여우면 장땡
-
롤체 접음 2
뭣같아서 못하겠음
-
이유가 뭐냐고 물어보면 뭐라고 답해야함? 그리고 언제까지 나가는게 맞음? 다음결제일...
-
신기 방기
-
무물보해주십쇼 12
선넘질 ㄱㄴ 이상한 건 놉
-
3분에 하나씩 썻는데 이젠 귀찬기도 하고 늙엇나보오(?)
-
ㄱㄱㄱ
-
과생활 안하고 개씹히키코모리로살거싶은데 그러자니 타학교 동일전공에 아는사람도없고
-
혼자 먹었는데도 5만원이 나가네
-
탐구 선택과목 6
사탐(세지)하나 과탐(지구)하나 하려는데, 세지가 표점이 낮아서 걱정입니다 ㅠㅠ...
-
26도 비슷하게 가려나요
-
Team07 여러분 감사합니다
-
4만보 ㅇㅈ 6
-
피파 팀평가좀 1
나름 근본 멤버로 짯음 저자본 이해좀 급여분배도 ㄱㅊ한거같은디
-
나 싫은사람 없지? 11
있으려나?ㅎㅎ...
-
별로 가고 싶지않은데 안 가도 되겠죠
-
빨주노초 4
암 어 레전드 타노스
-
중국 해커, 어설픈 기업 기밀 도둑에서 전쟁 무기로 진화 [PADO] 0
[편집자주] 시진핑 중국 국가주석이 2027년까지 대만 공격 준비를 군에 지시했다는...
-
???:저번에 쓰신 글 잘봤어요^^
-
헬스 해보고싶다 3
무한칭찬 받으면서 배우고 싶은데 피티는 너무 비쌈
-
학회가입해보신분 0
학교에서하는거말고 한국ㅇㅇ학회 이런거 가입비 매년 내야하는거에요?
-
머스크 2조달러 아낄 수 있다는데…'DOGE' 칼질에 美공직사회 칼바람 0
지난달 20일 도널드 트럼프 미국 대통령의 취임 후 그를 제외하고 2기 행정부에서...
-
최고야
-
고3때 카러플 타임어택 주간랭킹 순위권에 들어봤음 물론 복귀하려고 하니까 너무 많이 바뀌어서 접음
-
그냥 계산해도 별로 시간소모 많이 없을거 같은데 외워놓으면 도움 많이 되나요?
-
치케프라 트레이드 신청해놓고나서 보니까 이거 추첨방식인데 왜 결제가 지금됨? ㅅㅂ?
-
닉어케 바꿈 1
못찾겠어요
-
200원짜리 한 발로 벌떼 드론 동시 무력화… ‘RFDEW’ 실전배치 눈앞 [밀리터리 월드] 0
드론을 감지하고 추적해 무력화할 수 있는 혁신적인 지향성 에너지 무기(RFDEW)가...
-
레전드기만하나함 4
오늘 아침에 졸려서 잠 깨려고 커피샀는데 효과가 없는 거 같아서 자세히 보니까 디카페인 커피였음
-
설의적 표현<-------이 ㅅㄲ 어제 공부 안함 13
카러플 2시간 돌리고 유튜브로 버튜버 좀 보다가 전독시 정주행하고 사카모토 데이즈...
-
아이 무덤에서 다른 남자와 관계한 짝사랑···“그래도 절대 못잊겠어요” [사색(史色)] 5
[사색-89] 그토록 간절히 원했으나, 그녀는 신기루처럼 빠져나갔습니다. 그녀를...
와
무한원점이 뭐하는애임
걍 무한히 멀리잇는 점임? 직선이 지나는
Steregraphic projection 검색
오랜만에 들어보네 ㅋㅋ
이게뭐야그냥눈덩이던지면되는거죠?
이 반전변환에서 원의 중심 O는 무한원점으로 가고, 무한원점은 O로 갑니다. (r^2/0=Inf, r^2/Inf=0)
이게 이해가 안감
"간다"는게
멀 변화시킨다는거임?
걍 O를 반전시키면 무한원점이 된다는거임
오호
개쩌네
독해력 이슈엿네
방드가서 찾아봐야겟다..
아ㅏㅏ 5분봤는데 이해못함 물리나 해야지