[칼럼] 화학1 내분풀이의 정점
게시글 주소: https://orbi.kr/00072180322
+ 저는 댓글을 좋아한답니다
오늘은 가중치 내분에 대해 다뤄볼겁니다.
1. 가중치 내분이 뭔가요?
오르비의 논리화학(사실 최초의 제안은 눈풀화1)님께서 개발하신 문제풀이 스킬입니다. 그 전까지 이름 없이 극소수의 사람들 사이에 여기저기 떠돌다 이분께서 한번 정립하셨었습니다.
2. 가중치 내분을 공식화한다는게 무슨 말인가요?
사실 내분 풀이 자체만도 하나의 스킬입니다. 기존에는 이것만으로 풀이가 많이 단축되어서, 마치 다이아몬드 원석같은 스킬이였죠.
하지만 평가원이 알아채고 이게 안 통하거나 함정에 빠뜨리는 문제를 만들었습니다.
그런데 생각치도 못한 파트에서 사용 가능한 내분인, 가중치 내분이 생겼습니다. 엄청 범용적이지 않지만, 특정 상황에서 문제풀이 시간을 무지막지하게 단축시킵니다. 가공된 다이아몬드같은 스킬이라고나 할까요?
그리고 며칠 전부터 이 가중치 내분에대해 파보고 있었습니다. 그리고 조금 더 이해가 쉽고, 공식처럼 쓰일 수 있도록 정리해봤어요. 이제는 다이아몬드 목걸이..? 정도의 스킬로 보시면 될 것 같습니다.
이름만 거창해요 쓰는것은 한번만 제대로 이해하면 하나도 어렵지 않아요.
그 전에, 기본적인 비례식 풀이법만 간단하게 정리해봅시다. 이것도 논리화학님 글에서 보았고, "가비의 리"를 활용한 계산입니다.
먼저, 가중치 내분이 활용 가능한 상황이 무엇인지부터 알아봅시다.
< 분모와 분자가 일차함수일때 > 즉, 유리함수 형태의 자료에 세 점의 정보가 있을 때 활용 가능합니다. (단, 첨점이 없어야 함)
여기서 의문이 드실 수 있습니다. "아니 유리함수 그래프만 주어졌을때 쓰려면 너무 제한적인데 겨우 그거때문에 공식 하나를 외우자고?". 그러나, 꼭 그래프가 주어져야 하는것은 아닙니다. 이유는 설명을 보다보시면 이해되실겁니다.
아래는 우리가 살펴볼 그래프입니다.
한번 기울기에 집중해봅시다.
유리함수를 k+b/(a+x)로 정의한 뒤, 왼쪽 선분의 기울기와 오른쪽 선분의 기울기를 각각 L1, L2라고 하고 표현하겠습니다.
놀랍게도 이렇게 식이 정리됩니다. 즉, 다음의 1차 결론을 얻을 수 있습니다.
놀랍게도 기울기의 비를 통해 특정 시점에서 분모의 값을 구할 수 있습니다.
x1에서 X의 값(=a+x1)과 x3에서 X의 값(=a+x3)을 각각 t1, t3라 부르겠습니다.
그런데 우리는, 실제 X의 값과 추가한 X의 값의 차이가 a로 일정하기에, 그 사이의 차이 관계는 실제 X의 값이든 추가한 X의 값이든 동일함을 알 수 있습니다. 이를 아래 그림에서 표현해보겠습니다.
그리고, 아까 기울기의 비를 통해 알 수 있다고 했죠?
때문에, 우리는 m과 n의 정확한 값을 모르고, 비율만 알아도 우리가 구하고자 하는 값을 구할 수 있습니다.
이를 통해, 다음의 결론을 얻습니다.
초록색은 뒤에서 다시 한번 설명해드리겠습니다.
이게 식으로만 보이니 잘 와닿지 않으실겁니다. 그림으로 표현해보죠.
이렇게 시각적으로 보면 편합니다.
놀랍게도 x값 3개와 y값 3개의 내분 비율을 통해 t1, t3에서 실제 X의 값을 구하는 공식이 완성됩니다.
단, 주의하실 점으로는 유리함수의 개형이 뒤집혀 있을 때에는 y축 방향에서 비율의 위치가 뒤집힙니다. (사진 참고)
예제1
이게 어떤식으로 쓰이는지 보죠. 아래는 예제입니다. V를 구해보세요.
스
포
방
지
공
란
와, 정말 간단합니다. 아까 보았던 비례식을 빨리 계산하는 팁은 이런식으로 활용이 가능합니다.
이 방식의 장점은, y축 값의 분모가 x축의 단위와 같기만 하면 용액이 무엇이든, 농도가 얼마든, 중화반응이 일어나든 상관없습니다. 첨점(뾰족한 점)을 걸쳐서 정보가 주어지지만 않으면 됩니다.
예제2
두 번째 예제입니다. 이번엔 유리함수의 그래프가 주어지지 않았습니다. V를 구해보세요.
스
포
방
지
공
란
아까 나중에 설명하겠다고 했던 n1:m1으로 섞는게 무슨 뜻인지 이해하실겁니다.
이렇게 (가)와 (다) 용액을 적절히 혼합하여 (나) 용액을 만들 수 있다면, 그래프를 그려낼 수 있습니다.
하지만, 이런 방법이 존재한다고 사고의 폭이 여기에만 같히면 안됩니다. 분명히 이 스킬로 풀 수 없는 문제도 상당히 존재합니다.
예제3
이번에는 양론 문제입니다. 이러한 분해반응이 있을 때, 각 점에서 A의 질량비를 구해보세요.
스
포
방
지
공
란
다시 한번 말하지만, 우리는 비율을 알고자 합니다. 전체 기체의 양은 A의 질량에 비례합니다.
따라서, x축을 A의 질량이라고 보고 비율관계만 찾아도 무방합니다.
그리고 혹시, 이 문제를 풀면서 눈치채신분이 계신가요?
이 문제는, 2023학년도 9월 모의평가 20번 문항으로, 오답률 78.1% (2위) 문제를 다른 관점으로 바라본 것입니다.
정반응을 뒤집어서 역반응을 정반응처럼 바라봐, 분해반응의 관점으로 접근하였고, 그래프를 그려내 A와 B의 질량을 매우매우 손쉽게 구해낼 수 있습니다.
(사실 그래프를 그리지 않아도 섞는 비율과 내분점만 알면 되므로 구할 수 있습니다. 시각적으로 잘 보이기 위함일 뿐.)
혹시 이어 풀어보시고 싶으시면 답은 아래 적어두겠습니다.
그리고 이 기술은 학교 선생님들은 물론, 평가원조차도 모릅니다..! = 시험 나오면 나만 혼자 개빨리 맞춘다. 다만, 이 기술을 써야할 상황과 못쓰는 상황을 판단하는게 가장 중요합니다.
그럼 이 기세를 몰아, 과거 기출문제를 훑어보겠습니다.
아래는 평가원, 교육청 기출문제들로 구성되어있고 가중치 내분을 단순히 쓰기만 하지 마시고, 이 문제가 가중치 내분을 쓸 수 있는 상황인지부터 확인해보세요.
사용 불가능한 문제와 사용 가능한 문제를 섞어뒀습니다.
먼저 가장 쉬운문제부터 어려운것까지 차근차근 봅시다.
(오답률을 적어두긴 했는데.. 표본이 고여서 옛날껀 10~20%는 빼셔야 합니다.)
2021년 (2022학년도) 수능 15번 (오답률 60.0%)
- 공식 사용이 가능하다면, k는?
스
포
방
지
공
란
원본문항 답 : 3번
k = 0.02
가중치 내분 쓰면 바로 구할 수 있습니다.
2019년 (2020학년도) 수능 18번 (오답률 81.9%)
- 넣어주는 용액이 중간에 바뀌네요? 공식 사용이 가능하다면, 5, 10 지점의 단위 부피당 전체 이온 수는?
스
포
방
지
공
란
원본문항 답 : 1번
5mL에서 2N, 10mL에서 N
가중치 내분은, 동일한 유리함수 상의 3개 점에 대한 정보가 있을 때 사용 가능합니다.
따라서, 용액 기준이 아니라 함수가 바뀌는가?를 보셔야 합니다.
여기서는 둘 다 1가이기에 함수 변화가 없어요.
2024년 (2025학년도) 6월 평가원 20번 (오답률 67.5%)
- 공식 사용이 가능하다면, a를 구합시다.
스
포
방
지
공
란
원본문항 답 : 5
이 문제는 가중치 내분을 사용할 수 없습니다. 유리함수가 아니거든요.
하지만 우리는 "일차함수 형태"라는 것을 통해,
완결점 이전에는 전체 양이 일정하고 C의 양만 증가하는 형태,
따라서 기울기 공식에 따라 2-a=0, a=2임을 알 수 있습니다.
2020년 4월 교육청 20번 (오답률 74.1%)
- 공식 사용이 가능하다면, ㄴ과 ㄷ을 판단해봅시다.
스
포
방
지
공
란
원본문항 답 : 5
이번에는 빨간색으로 한번, 파란색으로 한번 해서 가중치 내분을 총 2번 사용한 풀이입니다.
나름 오답률 74%의 20번 문제인데 풀이가 매우 간단하죠?
2021년 (2022학년도) 수능 19번 (오답률 59.1%)
- 공식 사용이 가능하다면 x만 구해봅시다.
스
포
방
지
공
란
원본문항 답 : 4
이 문제는 사용이 불가능합니다. 아래는 잘못된 풀이입니다.
반응 후 전체 기체의 부피가 완결점 이전에서 넣어준 A의 질량에 비례하지 않습니다.
역수 취해서 생성물의 양을 분모로 내리면 되는거 아니냐? 하실 수 있지만,
그렇게 되면 0에서 발산하기에, 사실상 두 점밖에 알 수 없습니다.
만약 사용하려면 완결점 이후에 사용해야 하지만, 점 세개의 정보가 없습니다.
항상 주의하여 사용해야 합니다.
2024년 10월 교육청 20번 (오답률 64.1%)
- 공식 사용이 가능하다면 x를 구해봅시다.
스
포
방
지
공
란
원본문항 답 : 5
밀도를 뒤집어서 질량과 비례하게 만든 뒤에 사용합니다. 쉽게 계산할 수 있습니다.
2021년 4월 교육청 20번 (오답률 79.5%)
- 공식 사용이 가능하다면 첨점의 x좌표를 구해봅시다.
스
포
방
지
공
란
원본문항 답 : 5
이 문제는 유리함수 그래프지만 사용이 불가능합니다. B의 질량과 전체 몰수가 비례하지 않기 때문입니다.
계속 공식만 쓰다가 이런 문제에 낚이시면 안됩니다!
2021년 7월 교육청 19번 (오답률 64.5%)
- 공식 사용이 가능하다면 x만 구해봅시다.
스
포
방
지
공
란
원본문항 답 : 2
실험 I에서 전체 질량을 두배 해서 A가 일정하고 B를 투입하는것으로 바라봤습니다.
중간에 살짝 계산이 더렵다 느껴질만 한데, 그 즈음 해서 바로 정수로 깔끔하게 나오는 쾌감..
ㅋㅋㅋ 짜릿한 문제에요
이런식의 관점도 보이면 쓰시는게 좋아요.
2019년(2020학년도) 9월 평가원 17번 (오답률 66.4%)
- 공식 사용이 가능하다면 x를 구해봅시다.
스
포
방
지
공
란
원본문항 답 : 2
빨 > 파 > 초 순서대로 보시면 됩니다.
완결점은 C만 존재하기에 값이 1입니다.
이후 완결점을 k로 잡고 가중치 내분 쓰시면 k가 나오고,
완결점 이후에는 지지난 시간의 선형적 분석법(일차함수처럼 분석하기) 쓰시면 됩니다.
여기선 너무 깔끔하게 중점이니까 x가 바로 나오겠죠?
여기서 알 수 있는 점!
'두 점의 정보가 온전하고 한 점이 정보가 하나 부족해도 나머지 하나는 구할 수 있다.'
수학시간에 사인법칙 코사인법칙 써서 삼각형 확정시키는거랑 비슷한 느낌이에요.
수만휘에 올려둔게 읽기 조금 더 편하니 이 두 링크로 들어가시는것도 좋습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1.스타팅블록 워크북 스텝1은 풀리긴 하는데 스텝2부터 넘복잡해져서 빡센데 원래...
-
대체불가의 만점구조 시스템 <== 여기만 믿고간다
-
자괴감안느끼려면 채점같이안하면되나요 그래도 답은궁금한데...
-
저는 kold 8주석 맞아봄 ㅋㅋ
-
더이상의 자존심이 없구나 현역학생이란 힘든거구나..
-
그건 개오바잔음
-
부엉이인형은 언제주나요 진짜 개푹신해보이던데ㅠ
-
대학 잘가라
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 한컴오피스 한글"macOS의 최대의...
-
3합이고 과탐은 진짜 자신없는데 아직 사탐런 해도 될지 확실하지 않아서 하 생명은...
-
개념원리 쎈 자이 마플 이런걸로 하나
-
사탐 4
사문 생윤 하고있는현역입니다 둘 다 2/3정도??한거같은데 사문을 바꿀지말지...
-
뉴런들으면서 해당부분 마더텅으로 풀고(ex. 등차수열만, 등비수열만) 단원하나끝나면...
-
내 충전케이블 잃어버린 친구가 편의점에서 5핀 사왔음 나는 한치의 망설임도 없이...
-
되면 군수함
-
맞팔구 2
은테까지 15명
-
오르비목적 5
뻘글아니였음..?
-
이 느낌은 뭘까
-
댓글좀요.. 급해요우 ㅜㅠ
-
그룹내에서 잘 융화되는거는 나에겐 어려운 일이야 돌이켜보면 중고딩때도 그랬어
-
교육과정 바뀌니까 09들한테 조언해줄것도 없고 해서 많이들 나가지 않을까하는 생각
-
오르비 안녕히계세여 14
물리를 하러 가볼께 내일 밤 10시에 봐
-
5꽉의 악마
-
그웬 캐리 6
근데 트런들 왜 함...?
-
전교12등이 지균(학추) 가져가놓고 의대 합격해서 안감 일반은 학교가 별로라 뚫기 힘듬
-
수능 일주일 전에 된 거라서 운 저 때 다 쓴듯
-
제가 2학년 때 화생지를 했고, 수능 탐구로 지1 지2 or 지1 화1 을...
-
방인혁 선생님 2
방인혁 선생님 교재패스 구매했는데 사은품으로 쿠션,담요를 준다더라구요. 막 필요한건...
-
lck 중이였군 그래그래
-
작년 독학해보신분들 n제같은 교재비로 얼마정도 쓰신거같나요??? 5
교재비 장난아니네요 인강교재도 그렇고...수학 n제 구입하려고보니 어지간하면...
-
역함수 생일
-
ㅈ됐다 개망함 시발점스텝2 어려워서50년잡고보니 7시반입니다 해설보고 영어실모...
-
과탐러시절 최대업적 18
중3때 완자 독학으로 물1 한 바퀴 고1때 통합과학 물리 친구들한테 가르쳐줘서...
-
한달 남았다
-
그렇게 중요함?? 고려대 같은 경우에는 학추나 학우나 최저랑 조건들이 비슷하지...
-
수능으로 지1 지2 가 나을까요? 지1 화1 이 나을까요? 전자 후자 뭐가 더 등급따기 유리한가요?
-
AD Garden VPN???이란 게 깔려 있는데 이게 뭐임???? 누가 깔앗지
-
수도권 끝에 사는 고3이라...자금껏 학원없이 인강만 들어오다가 올해 시대인재...
-
얼마나 되는지 한번 보자
-
이벤트당첨인증) 3
감사합니다 수험생도 아닌 사람이지만 커피는 좋아하므로 꺼억하겠습니다~~
-
배도안고픈데 끊임없이 먹음 학원끝나고 음식점을 지나치치못하고 항상 머 포장해와서...
-
내신 6인데 생기부 꽉채워져있어도 많이 손해에요?
-
팀07의 시대가 왔다 11
이제 고닉분들 대학가서 핑크빛인생 사실동안 우리가 오르비 먹으면 된다 이말이야~
-
n수의 위험성 읍읍
-
기엽떡볶이면 더 좋았을듯
-
이런거 있어야 나중에 억울한일 안당하지
-
내 로또최고기록 0
4등이 5만원인가 그거 엄마가 사다준로또중에 있었음
-
언제되냐 나도 인생 역전 좀 해보자
-
5등
-
실력이 늘어도 4
부족한점도 같이 늘어간다
좋아요 꾸욱!!
오오... 뭔지 모르겠지만 스크랩

이건 이륙이다화학 하면 안 되는 100가지 이유 중 한 가지