이 문제 어떻게 풀어요?
게시글 주소: https://orbi.kr/00072173527
p랑 2p+1이랑 같을 때랑 다를 때를 나눌 생각을 어캐 함?
수험생 대다수는
f(p)=0이면 f(2p+1)=0이어야 한다.
까지는 아무 문제 없고
어 근데 그러면 f(4p+3)=0도 만족해야 하고
이게 계속 반복되면서 삼차함수라는 조건과 모순이되네?
까지도 갔을건데
그 다음을 어캐함?
당연히 모순이 생기는 이유를 찾아서 제거해야 하는데
이유가
p랑 2p+1이랑 같지 않다는 가정을 해서인데
이걸 어캐 생각해냄 ㅋㅋ
그니까 p랑 2p+1이랑 같을 수도 있다는 생각을 하는게 너무 어려움.
수학 고수들 이 문제 풀면서 한 생각 공유좀
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
확실히 정신건강에 좋은거 같네요
-
연애하지마라 배신감 max
-
이상형 여자 키 조사 24
응응 여러 개 선택 가능
-
여러분 분노 ㄴㄴ 18
옆에는 여동생임뇨 저는 여사친 노베 모쏠이니 걱정하지 말라굿~~!
-
아래를 5cm늘리고 싶음 17~18cm는 어떤 느낌일까
-
으어ㅚㅢㅡㅢㅢㅢㅣㅣㅢㅣㅇㆍ
-
사치 ㅇㅈ 14
-
오흐비 교재 구매할 때 포인트처럼 쓸 수 있음?? 어따 씀?? 오르비 4년째인데...
-
진짜 씨발임 같이 있으면 정병옴 엄마때매 누나 정병 오는 거 보고 있으면 한시빨리...
-
ㄴㅇㅅ 과외끝남 1
1시간뒤 연강임 아
-
수학 n제 1
이번년도에 재수하고, 수학은 6월 백분위 96 9월 95 수능 92인데 뭐푸는 게 좋을까요?
-
드가자!!
-
죽고나서
-
나 화장 관련 6
동생이 나를 실험대상으로 써먹은적있음뇨
-
진짜 모름 있으면 받고싶다
-
내가 직접 하진 않았고...그 뒤로 한번도 해본적 없음 세수 하고 스킨이랑 수분크림...
-
전역까지 5일 6
정신병 on
-
좌석예약해야하는 승진햄 강의 제외 모든수업 일찍가서 자리잡고 맨앞에서들음 나름 의미있는 일이겠죠?
-
남자가 먼 화장이고. 25
햄은 화장은 커녕 샤워도 잘 안한다.
-
저는 나가기 전에 옷 고르고 머리 말리고만 해도 귀찮아서 화장을 생각해본 적도...
-
기름이 많아서 건강에는 안좋을것같은데 맛있음 아주가끔 먹는건 괜찮겠지?
-
사각턱보톡스 맞으면 좋다해서 물어봤어... 보톡스 효과좋아? 어뗘
-
님들 투표해주셈 5
네
-
여자애들 화장 전후 많이 보는데 눈코입은 그대로인데 피부 톤이 정리된 거라서 다른...
-
남자화장씹게이같 3
은거는 인정하는데 피부에 살짝 바르는건 뭐라하지 말아줘라.. 이건 해야 남들 눈이 안썩어ㅠㅠ
-
첨이라 그런가 생각보다 빡세네 가르치는 걸 허투로 할 수 없으니 수험때도 안 했던...
-
사각턱 보톡스 맞을정도로 얼굴살 심함요??
-
암기량 적다는 것도 이해는 안 됨… 개인적으로 한지보다 많았음
-
원화->그화폐 환전은 되는데 그화폐->원화 환전은 안되잖음? 근데 덕코는 그렇지...
-
노베이스 기준 1년안에 하나틀 가능한가요
-
본가가 서울 송파구이고 자취하는 곳은 서울 종로구 쪽이에요 전입신고를 안해서...
-
남자 화장은 2
여자 화장과 다르게 잘생김에 + alpha 해주는 금상첨화 느낌임 여자는 본판이...
-
지방분들 이거 진짜임? 10
구애의 춤 안추면 버스 안섬?
-
1회 룰렛 결과 3
-
무슨 의미가 있는거임?
-
아개웃기네 2
-
남자가 화장해도됨?? 11
대학가서 안쪽팔리라나 코 높이는 화장법 이런거 공부하고있긴한데 ㄲㅋㅋㅋ
-
어제 새벽에 뭐했더라 16
기악이 중간중간 끊겨있는데 게시글보니까 우웅 온냐들 사랑해 한거같은네 마증ㅁ?
-
아 옷사는거 3
지루해~~ㅠㅠ
-
연고/서성한/중경외시는 어느반? 순수한 궁금증
-
나 현생말고 거기 안에서 살고싶어
-
편의점 교환 안 되는 거 맞고 덕코는 쓸데없는 거 맞아요... 그러니까 쓸데없는...
-
시그니엘 입구쪽 지나가다보면 진짜 별게 다 있더라...
-
지금 ㅈㄴ 할짓이 없어서 방황중이라 나같은사람 있음?
-
뭐가 진짠거야 힝
-
메이저병원 바이탈수련받았었음 부모님이 노숙자냄새난다고 했을때 여자친구가 냄새난다고...
저도 이거 못풀었어여 헤헤
저는 그냥 감각적인 직관으로 풀어버림
너무 찝찝함..
중앙대 ㄹㅈㄷㄱㅁ ㄷㄷ
4p+2가아니라 4p+3아니에요?
아맞음 수정할게요
그냥 삼차함수 개형을 하나씩 그려보면서 왜 모순이 생기는지 파악했던 것 같아요
그러다보니 실근이 하나 뿐이라는 결론이 나옴
내가 어떤 '가정' 을 했는지 명확히 하는게 제일 중요하다고 생각함.
결국 무한히 계속된다는 결론이 나는 사고의 시작에서 님은 p≠2p+1이라고 의식적으로든 무의식적으로든 잡고 갔기에 그런 전개를 할 수 있던 거잖음
맞음 근데 무의식적인 가정은 말 그대로 무의식적이라 의식화하기가 너무 힘든듯..
뭐 굳이 이렇게 안해도 특수의 관점에서도 얼마든지 가능함. 어떻게 하면 모순이 안 생길까->대개 특수한 지점에서 그게 성립하는 경우가 많으니까요..
아 그렇게도 풀어도 괜찮는데 범바오가 그렇게 하지 말라해가지고..
최대한 그렇게 안하고 푸는 습관을 들이는 중이에요
마즘
걍 짬에서 나오는 바이브라고 생각
걍 문제 많이 풀는게 해답같은데
걍 특수한 지점이 뭘까하고 생각하면 저거바게업음
삼차함수 근 관찰 > 그래프
근 a, 2a+1 존재
근 두 개의 대소에 따라 그래프 개형 바뀜
따라서 a>2a+1 , a=2a+1, a<2a+1 케이스 분류
근 관찰은 그래프 > 그래프 그릴 때 개형이 확정되지 않음 > 케이스 분류 필요
어 찾았다. 감사합니다.
결국 박스 조건의 충족 여부는
삼차함수의 근의 개수와 위치에 따라 바뀌니까
그들을 관찰하는 방식으로..
네 케이스 분류 굉장히 많이 쓰이니까 어떤 때에 써야하는지 한 번 정리해보세용
고수는 아닌데
f(p)=0 이면 f(2p+1) 도 0
그러면 식을 f= (x-p)(x-(2p+1)(x-?) 형태로 써야될거같은데
근데 모든 실수 p에 대해서 극한이 성립하니까
2p+1 =/=p 이면 근 무한생성이네? 삼차함수 x
두개가 같으면?
이렇게 풀긴 했습니다
제가 말로 푸느라 좀 늦었는데
함수 입장에서 생각을 해보면 근을 a라고 해봅시다.
그러면 f(x) 입장에서 (x-2a-1)의 개수와 (x-a)의 개수가 중요해보이네요. 근데 값이 존재한다고 하였으니 분모보다 분자의 0이되는 개수가 같거나 더 많아야겠네요. 이거 잡고 쭉 끌어가면됩니다
+ 박스조건이 f(a)=0이면 f(2a+1)=0이니
2a+1=a를 풀어서 a=-1이 아닌지점의 관찰을 해주면 나머지 근에 대한 단서도 얻을 수 있겠네요
저거 풀때 딱 10분 남았는데 ㅈㄴ 느낌적인 느낌으로 박아서 풀었음..
안 그러면 삼차함수 근이 무한히 불어나지 않을까 라고 생각해서 풀면 돼요
같지 않으면 삼차함수의 근이 계속해서 나오니까 모순!
그냥 의심스럽잖아요 같을때 존나 수상한대? 라는 생각이 들 수 밖에 없다
결과값을 몰라도 한번 계산 해봐서 의문점을 해소하고 가줘야겠죠
어 이럼 안되는데 뭔가 이상한데..? (이게 출발점)
-> 그럼 뭔가 특수한 상황이지 않을까?
->p=2p+1 (등호 성립/ 뭔가가 겹치는 상황)인가?
->계산해보니 모순 없네 ok 확인 진행시켜!
아니 이런 생각을 어떻게 하는가? 라고 묻는다면, 기출에 많이 나오는 발상입니다. 소수의 사람들을 제외하고는 이전에 이런 논리를 학습한 기억이 무의식적으로라도 남아있기 때문에 이런 생각을 할 수 있는 것입니다.
예전에 수학 올림피아드인가 암튼 그런 시험에서 매우 어려운 문제를 맞추고 상받은 학생에게 이런 생각 어떻게 했냐고 물었더니 돌아오는 말이,
‘저 이거 예전에 비슷한 거 풀어본 적 있어요‘
출처는 정확히 기억안나는데 한 수학 강사분께서 실제로 하신 이야기입니다
by 250921