241122
게시글 주소: https://orbi.kr/00072133340
제 풀이 아니고, 대성마이맥에 무료로 올라와있는 김범준 선생님 풀이를 글로 옮긴 거
다음과 같은 집합 S를 생각하자.
S={x|f(x)>0,x는 정수}
f가 최고차항 계수가 양수인 삼차함수이므로, S는 명백하게 공집합이 아니며, 하계가 존재한다.
따라서 S의 최소원이 존재한다. (이산 극값 원리)
그 수를 p라 하자.
즉, p보다 작은 모든 x에 대하여 f(x)<=0이고, f(p)>0이다.
그러면, f(p-2)=0임을 알 수 있다. ( f(p-2)f(p)>=0, f(p-2)<=0, f(p)>0).
만약, f(p-1)<0이라면, f(p+1)<=0, f(p+2)>=0.이므로, 삼차함수가 될 수 없다. (증감이 넘 많이 변함)
따라서, f(p-1)=0임을 알 수 있다.
f'(0)<0임에 유의하면,
p=2, p=1, 두 가지 케이스만 남음을 알 수 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
롤리롤리롤리폴리 10
막 이런 노래 제목이 뭐엿징
-
eta
-
지2 쌩노베인데 함 풀어볼겜뇨 히히
-
방금 상상함 0
콜드플레이 내한 때 다같이 viva la vida부르는거
-
고1~고3까지 국영수(미기확 다) 통과 통사 포함하여 수능보다 쉽게 봐서 평가하는...
-
레함수도 있나요? 그럼 미함수도 있겠네 헉 ㅋㅋㅋㅋㅋ
-
인셉션 문학 새거 사야겠다 ㅈㄴ 재밌어보이네 ㅋㅋㅋ
-
커리큘럼 고르려는데 도와주실분 ㅠㅠ
-
학교가 비단 공부뿐만 아니라 하나의 작은 사회로서의 많은 기능을 한다는 것은 충분히...
-
해줘!
-
지금 나온 방 잡아야할지. 그후 기숙사가 나오면 어쩌지?싶어서요. 가능성 있을까요?
-
금전적으로도 꿇리지 않고 학벌도 나쁘지 않잖아 - 반수하는 친구 - … 근데 내...
-
내신 반영 대신 4
올림피아드 성적등도 반영되면 좋지 않을까? KMO 중등/고등 KMC 성대 HMC...
-
ㄹㅇ
-
ㄹㅇ 시대를 잘못태어났음 시발
-
사람들이 이상하게 생각하겠죠
오
최소원 <<< 이거 베트남점프 그거맞제
상당히 인상적이네
멋짐

제가 이거 보고김범준T 현강 대기 걸었었죠