Miquel Point의 존재성만을 이용한 매우 멋진 증명.
게시글 주소: https://orbi.kr/00072133137
BC=DA이고, BC와 DA가 평행하지 않은 볼록사각형 ABCD가 있다.
선분 BC와 DA위에 가변점 E와 F가 각각, BE=DF를 만족하며 움직인다.
AC와 BD의 교점을 P, BD와 EF의 교점을 Q, EF와 AC의 교점을 R이라 할 때,
PQR의 외접원은 항상 P가 아닌 어떤 점을 지남을 증명하여라
순수 논증적인 풀이)
M을 완전사변형 ADBC의 Miquel Point라 하자. (이 때 M은 당연히 고정점이다.)
그러면, M은 FACE의 Miquel Point임을 알 수 잇다. (나선닮음의 중심이므로 비율 생각)
R을 EF와 AC의 교점이라 하자.
그럼 ARMF는 공원점이다.
M이 (ARF), (DFQ) 위에 있으므로, M은 또한, AFQP의 Miquel Point이다.
따라서, M은 항상, (PQR) 위에 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잠이 안오네 0
ㅇㅈ올라올 때 자야하는데
-
저능부엉이 따잇 해본다
-
ㅇㅈ 봤다고 주장하는 애들아 조회수 13인데 7명이 봤을리가 없잖앙 ㅋㅋㅋㅋ 에이 설마...
-
3/14일 합동응원전때 쓰라는데 ㅋㅋㅋㅋㅋㅋ
-
ㅇㅈ 10
그것은 찐따인증
-
어느새 2시 12
새르비의 시간이에요
-
이건 꼭 간다... 2장 예매해야지
-
학원 도착함 1
-
칠리콩까네 칠리콩까네
-
딸친놈 13
-
지로함 6
평가원에선 잘 모르겟는데 (어렵게 안 내서), N제같은거 보면 되게 재밋는 문제...
-
얼버잠 12
-
나만 알겟음
-
자러갈게요 12
이따 봐요 저 일찍 일어날거예요
-
걍 이제 난 무적임
-
ㅇㅈ 0
술 4잔 밖에 못마심
-
다시 했을 때 메디컬 가능성 얼마나 보시나요?
-
ㄹㅇ임
-
잘때가된건가 5
슬슬
줠라
어렵내
진짜
나 이거 거의 2년전에 본건데 보고 감동먹어서 도저히 내 머리를 떠나질 않음