미적분 질문
게시글 주소: https://orbi.kr/00072128069
첫번째 사진에서 제가 쓴 식대로 연산 어디가 틀린건가요? 그리고 해설지 4번째 줄에서 5번째로 넘어가는게 이해가 안 돼요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
종합상식퀴즈 10
찍맞 4개쯤 있는 듯
-
너무 어려운데 이거마즘?
-
상시퀴즈 ㅇㅈ 1
ㅁㅌㅊ?
-
상식퀴즈 인증 0
개어렵네
-
상식퀴즈 맞춘거 3
뉴스, 뉴런 어쩌고 뉴 시가총액 10위 안 아닌거 넷플릭스 수식 뭐 잇는거 현행...
-
상식퀴즈에 0
이게 왜 나와
-
어짜피 지금 입대하나 6월에 입대하나 27로 가니까 ㄴ 정권 바뀐 뒤 상황 보면서...
-
국어 91 물아님 적당 수학 88 물아님 적당 영어 쉽지않음 물리1 48 나도이거...
-
상식 퀴즈 ㅇㅈ 2
매우 어렵네요
-
어 왜 오늘 2번 올리지? 2월 21일인데? 어 왜 오늘 2번 올리지? 2월 21일인데?
-
그닥다른거같지가않은데
-
서울대 그리고 연세대 라는 뜻
-
인생 망했노
-
건국대학교 홍보대사 [건우건희]에 대하여 알아보자! 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
과탐은 안하는 게
-
편의점 야간할때 0
검수기기 안쓰는곳은 힘듦
-
지1 작수 1이라 지구는 고정해두고 남은 한개를 골라야하는데 굳이 1까지도 필요없고...
-
상식퀴즈 ㅇㅈ 1
50개 중에 절반도 못 맞혔는데 꽤 높네...
-
노베에서 3등급 2
아는 동생이 작수 5등급의 완전 노베라고합니다.. 이번에 재수해서 3등급만...
-
시발 ㅋㅋㅋㅋㅋㅋㅋ 종합 상식퀴즈 2 - 마추기 아이오
-
오늘은 조녜여르비 ㅇㅈ이 보고싶네요...
-
공부 못하겠다 0
오늘 더이상 할 체력이안됨...
-
상식 퀴즈 4
하나 더 맞혓는데,, 영어로 바꿔놓은거 그대로 쳐서 날아감..
-
파리vs버풀 파리도 폼 상승세고 리버풀 박고있는것도 알긴 하는데... 그래도 버풀...
-
1등급 형님덜~ 9
수학 기출 문제집 사려고 하는데 양 적당하고 괜찮은 거 추천해주십쇼~~ 마플시너지...
-
캬
-
설의 붙으면 설뱃 의뱃 둘 다 나옴?
-
급식맛없는 고등학교를 나오기 ㄹㅇ
-
25수능 직업탐구 상업경제 풀어보시고 난이도에 대해 얘기해주실 수 있나요
-
과기대 있던데
-
경제 강의 훌륭한데? 10
나같은 저능아는 수특으로 공부하다가 머리털 빠지겠다 강의 재밌네 경제 왤케 재밌냐...
-
갠적으로 과외보다 이게 더 꿀임 시급 12000원에 주휴까지 받고 하루 9시간...
-
[칼럼]2. 우물 안 개구리는 바다를 말할 수 없다(부제: 국어공부와 시간관리) 4
[소개 및 성적인증] https://orbi.kr/00071877183 안녕하세요...
-
계절 열리나요?
-
이제 싸우세요 좋아요하나 눌러주시고
-
그건 듣고싶은 강의 수강신청하고 휴학을하던 알바를하던 마이웨이하는 일반대학에서나...
-
정법 어때요 7
물리에서 런치게되면 정벚할까싶음
-
19, 22 수능은 평가원 최악의 시험임. 17, 25는 성공적으로 잘만든...
-
밥 잘 챙겨먹고 화이팅하자 올해 성불해야지 몸 건강하고 항상 행복해라 오르비는...
-
인셉션 문학 새거 사야겠다 ㅈㄴ 재밌어보이네 ㅋㅋㅋ
-
쪼개기 알바도 정도가 있지 주휴수당 주기싫다고 하루에 2시간반만 일하래서 걍 그만둠...
-
베인 상처가 생겼어요
-
넵
-
해줘!
-
제가 내신 점수가 낮아서... 대학을 정시로만 갈 수 있는 상태입니다. 수시로는...
-
좀 많이 기네 진짜
-
새터가면 장기자랑 시키나요? ,;;;
log(1+3x^2)/(1+3x^2)
log(x^2+3)/(x^2+3)
둘다 x->무한대일때 수렴안하잖아요
아..1/f × (1+f)꼴만 생각하다 저런 터무니 없는 수식을 써버렸네요..그리고 해설지 4번째 줄에서 5뱐째 줄로 넘어가는건 분자 분모 로그식이 둘 다 0/무한대 꼴이라서 0이라고 쓰는거죠? 답변 감사합니다!
정확히는
상수수렴/무한대발산
꼴이라서에용
log4(3+1/x^2)은 log3 4로 수렴하죠
분자에 있는 3x의 3 지우고 +1도 지우고 분모에 있는 3도 지우고 그러면 스케일이 절반차이니까 1/2
음? 이건 어떻게 푸신건가요 로그함수가 점점 느리게 증가or감소하니까 진수가 무한대로 간 결과는 무한대의 스케일에 관계없이 어차피 같다고 보는건가요?
로그 진수 안 쪽의 곱셈은 로그 전체의 덧셈으로 바꿀 수 있으니 그렇게 한 거에요 해설지랑 똑같은 원리인데 그걸 식으론 안 쓰고 숫자 지우고 답 낸 거죠 로그 x의 무한대나 로그 3x의 무한대나 어차피 같은 속도니까요
야매기는 한데 이걸로 답이 틀리는 경우는 없을 거에요 아마도