재밋는 풀이가 잇는 문제
게시글 주소: https://orbi.kr/00072107978
BC=DA이고, BC와 DA가 평행하지 않은 볼록사각형 ABCD가 있다.
선분 BC와 DA위에 가변점 E와 F가 각각, BE=DF를 만족하며 움직인다.
AC와 BD의 교점을 P, BD와 EF의 교점을 Q, EF와 AC의 교점을 R이라 할 때,
PQR의 외접원은 항상 P가 아닌 어떤 점을 지남을 증명하여라
좀 더 일반화)
변이 평행하지 않은 임의의 볼록 사각형,
BE/EC=DF/DA를 만족,
풀이는 똑가틈
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저메추 ㄱㄱ 0
저메추 부탁
-
에휴이 2
끌끌
-
ㅇㅇㅇㅇ 남친이었구나 어쩐지
-
담주 월에 자퇴할려고하는데
-
친구 하나도 없는 오메가 메일
-
애니 안보는 사람인데 저건 진짜 귀여워보이는데 재밌나요
-
좀 그점이 내가 신기함
-
탈롤체함 성불 ㅅㅅ 11
흐흐
-
매일 못생겼으니까 ㅅㅂ
-
문풀 팁같은거 있나요?
-
기출 문제집. 0
검더텅 있는데 홀수기출분석서는 안사도 되겠죠? 훈도2.0듣기는 하는데 이미 기출서가 있어서;
-
현실은...역겨운씹덕한남 ㅠㅠ
-
어떸 영향이 있을까요?? 갠적으론 한의계 입지가 더 위축될거 같기도 해서요..
-
몰래 밥먹는중인데 ㅌㅈㅇㄹ되진않겠지
-
안녕하세요. 고등학생 및 N수생 여러분, 정시의 내신 반영과 메디컬 지역인재의 확대...
-
추가모집 1
올해는 정시에서 붙은 대학 포기하고 쓰는 거 불가능한가요 작년엔 됐던거같은데
-
심지어 등원후 40분 자고 수업도 들었는데
-
무제한인가요
-
이게 1티어가 아니면 나정말 죽어버릴지도 몰라
-
입시 난이도 질문 11
다들 옛날이랑 지금이랑 어느시대가 입시난이도가 더 어렵다고생각하심? 나는...
-
안녕하세요. 기출의 파급효과 지구과학1팀 입니다. 여러분들 덕분에 2024,...
-
강도가 머리에 총대고 못가면 죽인다고 협박하고 있다고 생각하고 해야지
-
드뎌퇴근~ 3
또 이렇게 한주를 무사히 클리어~~~
-
담배피고 들어가면 딱맞네
-
님들은 수학 공부할때 17
일관적인 풀이를 하기위해 연습하는게 더 중요하다고 생각함 아님 여러가지 풀이를...
-
생지 이상? 그정도면 그냥 생지 중에 하나 할 생각인데
-
닉 뭐로 바꾸지 6
-
더럽고 게으른 새끼가 아니라 진짜 아무것도 하기 싫어 근데 그게 게으르고 더러운...
-
학고반수가 나을까요? 아니면 2학점 교양 원격강의 토익리스닝? 이런거라도 들어서...
-
어쩌다 작년 책이 생겼는데 저걸로 독학 ㄱㄴ한가요? 통사는 학교 프린트 +...
-
닉 뭐로 바꿀까 6
흐음... 고민되는구나
-
06이고 이번년도 평백84받고 국숭라인 자전 붙었는데 27대입에선 지기균 조건이...
-
한양인터칼리지 신설인데 새터나 엠티는 안하는건가요 ㅋㅋ
-
한완기 수1,2 사려하는디 한완수 공통 (상),(중) 부터 봐야하나요? ㅇㅣ제 곧...
-
미적 공부법 1
올수 76점 3틀입니다 올해는 빨더텅 1회독 작년 수특수완 2회독 씨뮬 ebs...
-
꼭 좋은건 아니겟죠? 좋게말해야 몰입이지 고통스럽지 않을정도면 그냥 뇌를 덜 쓴거고...
-
안녕하세요. 얼마 전에 1주일 동안 영어 교재 무상 지원을 진행하였습니다. 사실,...
-
화작+확통+사탐으로 메디컬 갈 수 있는데 어디있나요? 0
그리고 백분위는 어느정도 나와야하나요?
-
걍 프린트 뽑을걸 엄마 미안해
-
갑자기 돌아보니깐 공부해야할것이 너무많음 방학동안 이룬게 없다니
-
이거 정량적으로 점수까는 대학있음? 수시나 정시나
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
지금 공부를 거의 안 한 개허수인데 지금부터라도 하려고 하는 중 지금 세젤쉬 하고...
-
흠 경제 내신 전교 2등이라 2등급 ㅋㅋ..고 3때 3월 모고는 1이였는데 그...
-
베르테르 71번 5
이제 담배펴야지
-
이화여대를 1학기 학고를 받고 2학기 휴학을 하려하는데 학교가 제대로 안 알려주고...
-
2d만큼 변형됐을 때 속력 최대라는 건 알겠는데 그럼 2d만큼 압축됐을 때도 속력...
-
강대 퀀텀관 ㅅㅂ 담배냄새남....
-
경제 불평등은 최소수혜자에게 이득이 되어야'만' 정당화 될 수 있다 내 생각엔 맞는...
-
고역이다 고역 ㅠㅠ
P가 아닌 점 Q, R을 지난다
ㅡ.ㅡ
근데 문제 의도가 뭐지
PQR 제외 항상 지나는 점이 뭔지를 얘기하고싶은건가
Q,R은 가변점이에요
얍 동점인데 지나긴 지나니까..
E,F가 어떤 위치에 있어도, PQR의 외접원이 지나는 고정점이 2개(P와 또 다른 하나) 라는 뜻
근데 저거 평행하지 않을때만 얘기하는거라
평행하면 무너져내리는=P와겹쳐지는 특정 점이라고 찍을수도있을듯

평행할 때는 P,Q,R이 다 같은 점이 되어버려서
그곳이 정답의 수렴점음,, 근데 아마 그걸로 안 될꺼에요,
이거 평행일 때가 안 되는 근본적인 이유는 다른 것보다
평행이면서 길이까지 같은 경우에는, 나선닮음 (회전+확대,축소)의 중심이 무한원점으로 가버려서 그런거라
아 아니다, 나선닮음 중심이 교점으로 가버리는구나 이 경우는

외계어해석이필요합니다근데 님이 재밋어할거 같은데 이 주제 ㅋㅋ
나선닮음은 말 그대로, 어떤 점을 중심으로 회전 + 그 점을 중심으로 확대 축소 닮음변환인데
이거의 중심이 알려져있거든요, 그걸 이용하는 문제들이 논증기하학에서 굉장히 핫한데, 되게 재밌어요 ㅋㅋ
대충 극한 씌우는 경우라고 보심 됩니다
계속해서 평사에 수렴하는데 기존 규칙성은 유지
수렴점이 그곳인가? 로 이어지는
어디까지나 증명이 아닌 추측의 영역
https://orbi.kr/00063868529/%5B%EC%9E%90%EC%9E%91%5D-%EA%B5%90%EA%B3%BC%EC%84%9C-%EB%AA%A9%EC%B0%A8-%EC%88%9C%EC%84%9C%EB%8C%80%EB%A1%9C-%EA%B0%9C%EB%85%90%EC%9D%B4-%EC%93%B0%EC%9D%B4%EB%8A%94-%EB%AC%B8%EC%A0%9C?page=8&q=1149551&type=imin
아마 여기 쓰이는 거려나요
A 기준으로 뻗어나가는 닮음
음.. 확대 축소 변환인가요?
제가 이해한 바로만 판단하면 네
A에서 전부 뻗어나가는 형태니(원은 전부 닮음)
확대 축소 변환도 물론, 나선변환이지만 나선변환은 좀 더 일반적인 변환이에요.
위 그림처럼 X를 중심으로 회전과 확대 축소가 합쳐진.
변환에 초점을 둬서 말하자면
선분 AB를 선분 CD로 보내는 나선닮음의 중심이 X다 라고 말할 수 잇죠
ㅏㅏ 둘이 동시에
그럼 의심가는 지점은 X?부분이네요
근데 저건 최대지점이 정해져있어서(PX수직)좀 애매한

오호 바로 찾으셧군요
이왜진나선닮음의 중심의 유일성을 보이는 가장 간편한 방법은 복소수를 이용하면 나온답니다, 복소수를 이용하면 평행하고 길이가 같을 때 왜 중심이 없는지도 바로 알 수 있어요

복?소수?걍 제가건들게아니었군요
전 중학도형 내용도 야매로 문제풀면서 깨달아갔답니다

재밋는 이론이 많지요
교육과정있는거만알아서울었어
사실 전 공간도형은 아예 무지하다는..공도는 사실 배울 게
정사영의 개념 외엔 아예 없어요
그냥 평면도형에서 했던거하면 되는거라