재밋는 풀이가 잇는 문제
게시글 주소: https://orbi.kr/00072107978
BC=DA이고, BC와 DA가 평행하지 않은 볼록사각형 ABCD가 있다.
선분 BC와 DA위에 가변점 E와 F가 각각, BE=DF를 만족하며 움직인다.
AC와 BD의 교점을 P, BD와 EF의 교점을 Q, EF와 AC의 교점을 R이라 할 때,
PQR의 외접원은 항상 P가 아닌 어떤 점을 지남을 증명하여라
좀 더 일반화)
변이 평행하지 않은 임의의 볼록 사각형,
BE/EC=DF/DA를 만족,
풀이는 똑가틈
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이 풀이 정답이 뭘까
-
메인이...
-
25수능 공통 22 미적 27~30 틀린놈은 확통런해야된다 vs 재수생은 시간 많아서 괜찮다
-
노베 서울 재종 2
보통 어디다니나여
-
라이브는 현강이랑 수강료가 같고, vod는 수강료의 50%라고 들었는데 아닌가요?...
-
크보에서는 못하는 응웡가로 wwe를 할 수 있음 서로 조롱하고 비하발언하고 이러는...
-
기차지나간당 8
부지런행
-
머리카락 빼고 다 뽑아봄
-
열두시 전에 댓글로 인증해 주시면 드림
-
기사들은 안 쉬나 충격이야
-
약대 사탐 질문 5
26수능 약대 목표로 군수할 예정인데요 화미생1지1 22 수능 82 89 2 84...
-
‘하루가 삼년 같다’는 구절에서 하루와 삼년이 대비된다고 볼 수 있나요?? 해설에는...
-
자체휴강 때리는 날엔 스카에서 할 예정,, 도서관에서 다들 할만함?
-
영어를 젤 못해서 일단 지금까지 일리 들으면서 단어 외웠는데 신택스 들어가기 전에...
-
얼버기이 10
어제의 뻘글을 지울 시간
-
경한만을 목표로 한다면 선택과목 언매,미적,사문,생윤이 정베인가요???
-
뭐가 더 어려워요?
-
우웅 시롱
-
상대방을 생각 어쩌구보다는 이 말이 맞는 경우가 훨씬 많았어요 오르비에 유약한...
-
라이브 들어보고 잘 맞는지 확인해보고 싶은데...
-
정말 열심히 할게
-
당근 사기당함 3
이런 #~#
-
남캐일러 투척. 16
+여캐한명 음 역시귀엽군
-
집 가고 싶다
-
근처 학원 모두 전화 돌려봐도 이감 따로 판매하는 곳도 없고 집안 사정도 좀 그래서...
-
학부모님께 과외 받고싶다고 연락오면 다들 어떤것들 물어보시나요?? 과외가 처음이라...
-
[성적 인증] https://orbi.kr/00071836019 [칼럼글 모음]...
-
둘다 끝! 수고했다
-
생윤 단원수도 6단원이나 되고, 지금 책도 받았는데 사회문화에 비해 두께도 두껍고,...
-
이원준T 커리 4
재종 다니는 재수생입니다 선택은 언매이고 6모 94 9모 98 수능 92였습니다...
-
더 자고 싶어 5
으으
-
전 그냥 자고 싶어서 악으로 깡으로 버티면서 안갔는데 극대노하셨대요.어케 하죠.
-
뒷북 ㅈㅅ
-
인강 안듣고 혼자하고 싶은데 다들 어케했는지 궁금해요 독서 문학 따로따로요!
-
건동홍 문과가 수능평균이 높을까
-
워쓰한궈런 워아이중궈런 쎼쎼 따거 해주면 좋아함 성조 ㅈ박은 중국어로 해도...
-
중증외상센터 2
남수단에서 한국으로 다시 복귀하는 날 아침에 주연급 응급 간호사가 주연급 응급...
-
힝 ㅠㅠ 출근하기 싫단 말이야 우우 ㅠㅠ
-
쎈c만 돌릴까여 고쟁이만 돌릴까요?? 오답인거만 그때까지 몇회독 하게요......
-
얼평 7.6점 2
우헤헤우헤헤
-
쉬르비 선언 1
-
당근 #~# 1
10시에 보기로 해놓고 어제 갑자기 마음대로 9시반에 만나자고 말 바꿈 늦을까봐...
-
, 2
-
원순열이랑 모비율 바뀌었다던데.. 15개정 사는게 나으려나요?ㅠ
-
영감이 샘솟는구나
-
근데 뱃지 안달았는데 잡담탭 엄청 많이 보이는 분들 16
26수능 준비하시는 분들은 설마 아니겠지 아마 뱃지목록 대학이 아니라도 다른 대학에...
-
개춥네 1
오늘 놀러가려고 했는데 그냥 집가서 배그나 할래
-
나도 알려줘..옯왕따 시뤙..
-
메인가기 싫어서 글삭했는데 캡쳐한게 메인가네 #~#
-
하이 1
하이
P가 아닌 점 Q, R을 지난다
ㅡ.ㅡ
근데 문제 의도가 뭐지
PQR 제외 항상 지나는 점이 뭔지를 얘기하고싶은건가
Q,R은 가변점이에요
얍 동점인데 지나긴 지나니까..
E,F가 어떤 위치에 있어도, PQR의 외접원이 지나는 고정점이 2개(P와 또 다른 하나) 라는 뜻
근데 저거 평행하지 않을때만 얘기하는거라
평행하면 무너져내리는=P와겹쳐지는 특정 점이라고 찍을수도있을듯

평행할 때는 P,Q,R이 다 같은 점이 되어버려서
그곳이 정답의 수렴점음,, 근데 아마 그걸로 안 될꺼에요,
이거 평행일 때가 안 되는 근본적인 이유는 다른 것보다
평행이면서 길이까지 같은 경우에는, 나선닮음 (회전+확대,축소)의 중심이 무한원점으로 가버려서 그런거라
아 아니다, 나선닮음 중심이 교점으로 가버리는구나 이 경우는

외계어해석이필요합니다근데 님이 재밋어할거 같은데 이 주제 ㅋㅋ
나선닮음은 말 그대로, 어떤 점을 중심으로 회전 + 그 점을 중심으로 확대 축소 닮음변환인데
이거의 중심이 알려져있거든요, 그걸 이용하는 문제들이 논증기하학에서 굉장히 핫한데, 되게 재밌어요 ㅋㅋ
대충 극한 씌우는 경우라고 보심 됩니다
계속해서 평사에 수렴하는데 기존 규칙성은 유지
수렴점이 그곳인가? 로 이어지는
어디까지나 증명이 아닌 추측의 영역
https://orbi.kr/00063868529/%5B%EC%9E%90%EC%9E%91%5D-%EA%B5%90%EA%B3%BC%EC%84%9C-%EB%AA%A9%EC%B0%A8-%EC%88%9C%EC%84%9C%EB%8C%80%EB%A1%9C-%EA%B0%9C%EB%85%90%EC%9D%B4-%EC%93%B0%EC%9D%B4%EB%8A%94-%EB%AC%B8%EC%A0%9C?page=8&q=1149551&type=imin
아마 여기 쓰이는 거려나요
A 기준으로 뻗어나가는 닮음
음.. 확대 축소 변환인가요?
제가 이해한 바로만 판단하면 네
A에서 전부 뻗어나가는 형태니(원은 전부 닮음)
확대 축소 변환도 물론, 나선변환이지만 나선변환은 좀 더 일반적인 변환이에요.
위 그림처럼 X를 중심으로 회전과 확대 축소가 합쳐진.
변환에 초점을 둬서 말하자면
선분 AB를 선분 CD로 보내는 나선닮음의 중심이 X다 라고 말할 수 잇죠
ㅏㅏ 둘이 동시에
그럼 의심가는 지점은 X?부분이네요
근데 저건 최대지점이 정해져있어서(PX수직)좀 애매한

오호 바로 찾으셧군요
이왜진나선닮음의 중심의 유일성을 보이는 가장 간편한 방법은 복소수를 이용하면 나온답니다, 복소수를 이용하면 평행하고 길이가 같을 때 왜 중심이 없는지도 바로 알 수 있어요

복?소수?걍 제가건들게아니었군요
전 중학도형 내용도 야매로 문제풀면서 깨달아갔답니다

재밋는 이론이 많지요
교육과정있는거만알아서울었어
사실 전 공간도형은 아예 무지하다는..공도는 사실 배울 게
정사영의 개념 외엔 아예 없어요
그냥 평면도형에서 했던거하면 되는거라