역함수 질문 (해결됨뇨)
게시글 주소: https://orbi.kr/00072090145
역함수는 그래프가 증가 혹은 감소할때만 존재 가능하다고 수하에서 배운것 같은데 이차함수나 판별식이 0 초과인 삼차함수는 어떻게 증가 또는 감소만 하지 않는데 역함수가 존재하나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 나만 이럼? 답답해죽겄네
-
슬림 패키지 나왔던데 사실 모고 좋다는 거만 알고 다른건 하나도 몰라서
-
오줌 0
똥
-
02년생 장수생분들 13
아직 살아 계신가요?… TEAM02님덜아 ㅠㅠ
-
우왕 신기해
-
한완수 질문 0
통통이구요 작년에 반수로 아이디어랑 기생집까지 하고 수능 낮3 떴어요 이번에 무휴학...
-
때리지말아주세요 8
수2노베확통이라는이유만으로때리지말아주세요
-
사탐런 고민… 2
05이고 작수 화학50 지구37 나왔는데 사탐런을 둘다할지 한과목만 할지...
-
민지
-
대학커뮤니티 노크에서 선발한 단국대 선배가 오르비에 있는 예비 단국대학생, 단국대...
-
'다른 수능 영역의 경우에는 검토위원이 제시한 예상풀이 시간이 영역별 제한시간을...
-
과생활 진짜 꼬인것같은데......어케해요 ㅠㅠ
-
241122는 여러모로 말 많았던 걸로 기억하는데 23 수능 때 오르비가 기억이 안 남
-
그럼 지금쯤 경영학사나 심리학사 하나는 받았겠지
-
고등학교는 너무 노잼이엿고 초중이재밌었음 코로나전으로만 좀 가고싶다
-
큰 가슴 만들어봐요~ 아름다운세상~
-
배에서 소리도 ㅈㄴ 나고 독재에서 눈치 보여서 화장실 자꾸 가고 하.. 요새...
-
174/60kg 이고 골격근은 12월부터 매일 운동시작해서 어제 인바디 재보니...
-
주변 눈치 보면서 오르비 중..하
-
사람 한 명이 내릴 때마다 인사해주셔서 되게 기부니가 좋았음
-
가면 도움 될까요? 신청했는데 갈까말까 고민되네요.. 혹시 가보신분 있으시면...
-
어제는 불침번 때매 11시 10분정도까지밖에 못 했지만 오늘은 풀타임 연등간다
-
지인선N제가 유료화 된다는게 진짜인가요?
-
2월 21일임 ㅋ
-
이왜진
-
군수 3
군수 할까 말까 고민중인데 어쩔까? 난 이과지만 공대는 별로 가고 싶지는 않고...
-
목표 정답률에 부합했단 의미잖음
-
제발 부탁합니다
-
오늘밤 바라보온 12
저다리너무쳐량해~
-
사탐런 했는데 24
1지망이 약대인데 사탐런 한거 잘한거겠지..? 사탐 완전 노베고 과탐은 3등급 정도였어
-
근데 그냥 교수가 냈다 이건가
-
의대 세네명 3년전은 6명도 감. 24 불때는 1명 감 Sky는 합쳐서 세명도...
-
12월1일에 시작하긴 함
-
재수생이면 시간 충분 미적 고고
-
나도 서울 살고 싶어 ㅠㅠㅠㅠ
-
평균값정리를 만족시키는 X값을 함수값으로 하는 함수 1
그런 함수 관련 추론문제 23학년도 수능 이전에 일본이나 중국 시험문제에서 나온적 한번도 없나?
-
https://www.bai.go.kr/bai/result/branch/detail?...
-
우우우우우흥 4
우흥
-
내신 1.65 10
ㅈ반고면 일반적인 인식으로 어디 간다고 보나요? 자연대, 생기부 평타라면...
-
안녕하세요. 올해 수능 응시할 3수생입니다. 먼저 제 상황을 말씀드리자면, 현역:...
-
잘라야하는데 도무지 시간이 나지 않네요.... 인싸들마냥 사람들 만나러 다니느라...
-
그런거 어디서보는지좀 알려주세요
-
과대가 전화나 문자로 연락 오고 초대 되는거죠? 제가 직접 뭐 찾아봐야 하는 건 아니겠죠?
-
오르비는 안해봣을것같은 공부열심히한 귀엽지만 고상한 신입셍이 되기 위해 오늘도 커피...
-
고수탑 위콤 리사이트 삽니다
-
1. 문학 교과서는 크게 4가지 단원으로 서술 되어 있음 - 문학의 특징 - 문학...
-
스블 복습 1
현재는 김범준쌤 스블 복습 철저히 하면서 따라오고 있습니다 그 후에 엔제 풀면서...
-
고능아풀이같아서 힘드네.. MaxMin은 잘썼는데 점화식 그래프로 해석하는게 아직힘든듯
구간별로 쪼갰겠죠?
이런식으로 교점 구할때 그냥 y=x에 바로 대칭해서 교점 구하는데 이러면 안되는거 아닌가요?
경험상 역함수 존재라고 하기보단 그냥 y=x에 대칭이라고 생각하면 편함
뉴런에서 설명할때는 역함수라고 했다가 이런식으로 교점 구할때는 그냥 대칭으로 풀던데 그냥 역함수라는 거는 기억에서 지워버리면 되나요?
저런 문제 풀었었던거같은데 저도 저때 이해못하다가 역함수라는 개념보다는 y=x에 대칭이라고 생각하면 되는듯요... 역함수랑 대칭하는법은 똑같지만 역함수라는 단어를 안쓰는...???
문재 조건에서는 f⚫️f(x)=x라고 나오던데 이게 역함수 아닌가요?
그걸 y=x에 대칭이라구 하지않나요....??
아 맞다 저게 역함수 or y=x에 대한 대칭이었네요
감사합니다 정신줄 놨나보네요;;
사인함수 기준으로 이분의 파이보다 절댓값이 작다로 정의역, 치역 지정하면 단사 전사 만족합니디
코사인함수는 0부터 파아까지에요
삼각함수가 아니라 그냥 이차함수랑 삼차함수인대요?
님이 글에 삼각함수라 썼어요
아 죄송합니다 오타였네요 ㅠㅠ
합성해서 항등함수이면 단사 (일대일대응)이긴 합니다