님들 0/0꼴의 극한에서
게시글 주소: https://orbi.kr/00072049881
sinx tanx ln(1+x) e^x-1을 x로 바꿔서 계산해도 되나요?
어차피 쟤네들 다 분모에 x 있으면 수렴하기도 하고,
수학 좋아하는 친구한테 물어보니까 x=0에서 저 함수들을 근사하면 y=x와 그래프가 일치한다고 해가지고...
위의 설명과 같은 맥락으로 1-cosx는 1/2 x (x^2)로 바꿔도 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모쏠이라 그런가 3
집착하는 여친은 꽤 좋을것같음
-
헷갈리는거 A ~A로 판단하라고 하시는데 이거 체화 어케 하면 좋을까요..?...
-
으
-
조라요
-
대충 학원학생이 고3인데 지1 선택이고 토요일마다 3시간씩 지구 공부를 하고있다는 내용
-
본계는 스토리 많이 안올림.. 그냥 디엠 답장하거나 현생 생존신고용
-
여러분 주무세요 3
안잘거면 아래다가 이유 ㄱㄱ
-
ㅇㅇ
-
ㅇㄱㄹㅇ 부계만 씀 거의
-
Homothety (확대 축소 변환)의 멋진 활용 22
전에도 올렷엇는데 ㅋㅋ,1) 구점원. 삼각형 ABC에서 9개의 점을 지나는 원...
-
근데 이제 빠르게 다 넘겨버리는 경우가 많아요 그냥 테두리 없애기용(?) 대신...
-
성격 그리고 따뜻한 마음 약간의 센스 이런게 중요하다고 봄
-
그림 그려드림 5
으흐흐
-
이러면 어캄
-
중요한건 키가 아님 12
대두 이건 답이 없음ㅋㅋㅋ 거의 바꿀수가 없는 거라 사실상 재능임ㅋㅋㅋㅋ....ㅠㅠ
-
다시 자야됨 2
근데 사평우 글 보고 자야됨
-
막줄처럼임 그때는 아무리 힘들고 우울했지만 나에게 빛나는 미래가 있을거라는 헛된...
-
도태도 적당히 돼야지
-
인생계획 2
20대 군대 가고 대학 졸업하면서 돈 5억 만들고 일본 워홀 30대 일본인과 결혼후...
-
세상이랑 내 나이는 흘러가는데
-
공부 시작 2
생2 수특 돌리러 ㅃㅃ
-
잘자 0
일주일 뒤에 올게
-
directly similar, oppositely similar 이렇게 2 종류가 잇음
-
작년애 남은 간쓸개 풀면 되려나
-
웬만한 네임드 아니고서야 댓글이 안달리기 때문
-
롤 서버 터졌네 0
개짜증나네
-
잠시휴식 3
진짜10분만
-
이거받고 가겠습니다 자러
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 아이비"All-seeing Eye,...
-
이제 모밴 아님?
-
??
-
이미지메타 이게 참 신기한가같음 난
-
끝 3
오르비 글 클리너 alpha https://orbi.kr/00071814306...
-
개추 1
이제 모밴 아닌가
-
아무도 모르는 레전드 옯찐따면 개추
-
신입생들 앞에서 광대짓 해야될거같은데 추천좀
-
나름 한국 좋아하는데 부정적인 소리만 들리니까 점점 헬조선으로 보게됨 ㅋㅋㅋ...
-
머리가 아프다 3
배가 아파
-
조리퐁냄새가 나는거지? 땅다라당땅다라랃앋앋땅당당
-
안녕히주무세요 오르비언 11
안녕히주무세요
-
내가 늘그니라 쓸데없이 진지 잡순건가?
-
어디려나요 ㅋㅋ
-
작수 화작2 영어1 무휴학반수임...ㅠㅠ 성적 안 떨어질 정도로 하고 싶은데 기출...
-
기상 10
아나
-
약팔이놈들 판치는 세상에서 ㄹㅇ Goat임 • 간단한 고민들은 무료 상담 • 미친...
-
해보자
-
꿈에선 유명 에피 옯인싸가 되어야지
이게 원래 테일러 급수 얘기이긴 한데
맞아요 그런 이름이었던 거 같네요
limx->0 sinx-tanx/x^3 같은 건 얘기가 달라지긴 하죠
아 그렇네요 어라
삼각함수를 다항식으로 근사하는 건 생각보다 큰 오류가 있습니다 ㅜㅜ
그렇네요 결국 노가다 뛰는 수밖에 없나....
근데 막 무지성 치환하려는건 아니고
덩어리가 좀 더러울 때 바꿔서 계산하려는 거였어요.
e^(xsinx)-1 이런거 e^x제곱 - 1로 바꿔서 계산하면 편해서요
수2 내용인 줄 알고 들어왔다가 깜짝 놀라서 뒤로가기 누른 통통이면 개추 ㅋㅋ
이거개추
캬캬캭
공부하세요
하는중
저것들이 곱으로만 연결되어있고, x가 0으로 가고있으면 가능
만양 저것들이 차, 합으로 연결되어있으면 인수 찾아내서 묶어내고 계수 계산해야해요
아 감사합니다
그런데 곱꼴과 합꼴의 차이가 발생하는 이유는 뭔가요?
차 꼴이면 0-0 꼴이니 진짜 0-0=0으로 처리하는게 불가능해요
분모나 분자에서 인수(x)가 약분 가능하려면 분모분자 각각 전체에서 동일한 인수가 곱해져있어야 가능한 점을 생각해시면 이해가 되실겁니다
선생님 차꼴이면 극한식이 부정형으로 나와서 x로 치환해서 계산하는 것이 불가능하다는 말씀이실까요?
네네 예를들어 a식-b식 꼴이면 a,b 각각을 치환해버리면 안된다는 거예요
감사합니다!
곱꼴이면 ㅇㅇ 빼기꼴이면 얘기가 달라짐
아하 감사합니다
ㅎㅇ 보공해
직각이네
sinx=x-x^3/6
cosx=1-x^2/2 (+x^4/24, 사실상 안나옴)
tanx=x+x^3/3
이렇게까지 외우고 빼기꼴에서는 적당히 써주면 되긴 해요
e^x=1+x+x^2/2인데 이건 그냥 일차항 이상을 쓸 일이 없고
당연히 삼각함수, 지수함수는 다항함수가 아니니까 저 뒤에 항이 더 있지만, 사차항 이상부터는 그 항들이 나올 상황을 만드는 것 자체가 어렵기 때문에 사실상 문제에 나올 일이 없어요
선생님 x가 0 근처일 때 sinx tanx 이런 애들이 y=x와 완전히 같진 않다는 말씀이신거죠?
그런데 sinx나 tanx가 x^3을 인수로 가지면
리미트 x가 0으로 갈 때 sinx/x=0으로 수렴해야 하는 것 아닐까요? 뒤에 상수항도 있는데 생략이 된건가요?
sinx=x-x^3/6+...이니까요
sinx/x는 (x-x^3/6)/x인 셈이고, 다항함수 극한으로 봐도 이건 1이겠죠
아 그렇네요 무한대/무한대 꼴이랑 헷갈렸나봐요 죄송해요 ㅠㅠ
그리고 y=x와 완전히 같지 않다는 게 맞아요
정확히 말해서, x=0 근처에서(사실 이 경우 실수 전체에서) sinx는 x-x^3/6+x^5/120...+(-1)^n * x^(2n+1)/(2n+1)!+...과 완전히 같아요
저건 그 사실을 근사적으로 나타낸 거에요
아하 감사합니다 되게 복잡한 내용이네요...
정리하면 곱 꼴에서는 sinx tanx <<<< 이런 애들 대신 x를 대입해도 되나,
합이나 차 꼴에서는 식을 적절히 변형하거나 선생님께서 알려주신 개략적인 식으로 직접 계산하는 방법이 있는거군요.
네, 정확해요