님들 0/0꼴의 극한에서
게시글 주소: https://orbi.kr/00072049881
sinx tanx ln(1+x) e^x-1을 x로 바꿔서 계산해도 되나요?
어차피 쟤네들 다 분모에 x 있으면 수렴하기도 하고,
수학 좋아하는 친구한테 물어보니까 x=0에서 저 함수들을 근사하면 y=x와 그래프가 일치한다고 해가지고...
위의 설명과 같은 맥락으로 1-cosx는 1/2 x (x^2)로 바꿔도 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
성대 추합인데 0
아직 직배 안떴는데 이거 비정상임?? 정시 추합이긴함
-
끝나면 수강신청 교육한다는데 기차표 없어서 어카지
-
공부법 알려주신다는대 어떤가요? 살까요?
-
학종의대질문 14
고의도 학종에서 내신보다 생기부를 봄? 연대 한양대 경희대 중앙대 이대 이정도가...
-
!
-
힘을 몰랐을까 싶네요 지방 한의대 갈 수 있었는데 변호사도 워라벨이 매우 안 좋은거...
-
성북구 거주하는 고3중에서 함께 공부할 스터디 메이트 찾아요!쪽지주세요
-
무슨 애플펜슬로 난타를 조지고 있음. 아니 지금 노캔 이어폰 끼고 있는데 애플펜슬로...
-
의대 가고 싶어 6
응응
-
으아파서할복할뻔 3
어제 아웃컨츠 뚫은거에 머리카락 걸려서 고통스러유ㅠ서할복할뻔함 이제 피어싱 안 해 아파ㅜㅠㅠ
-
참고.. 마감 거의 30분전에 붙으심
-
아 왜 울려요
-
수능보고나서 수능채점할때임 근데 저는 당일채점을 못하겠던데 여러분들은 채점 언제하시나요...??
-
거짓말하지 마!!!!!!!!!!!!!!!세요
-
1칸합 ㅊㅊ 0
12월부터 오늘까지 3개월의 재?수를 끝내고 합격했네요ㅋㅋ
-
벌써부터 떨어질거같다
-
약사 진짜 3
돈 욕심 없으면 좋은듯 럭키 편돌이라 놀리는데 인생 편하고 좋을듯 인식도 괜찮고...
-
합격 인증 10
성불이요~
-
가보자 새르비.
-
겜끝나면 개평주는데 입시는 예비1번 그냥 안붙여주냐..? 진짜 끝인거야..?
-
응응
-
외대 합격 1
-
삼수생 성불합니다
-
*이력 -24수능 물1 3등급 -25수능 물1 3등급
-
씨발 ㅋㅋ 아니 왜 수2만 어려움
-
Hi guys 5
생존신고 정신은 멀쩡한데 몸이 반템포 느리네 타자는 멀쩡하쥬? 오랜만에 친구만나니까 재미썽
-
ㅈㄱㄴ 4인 1조 이런 식으로 소규모 팀과외하면 얼마 받음?? 한명당 시간당 얼마..?
-
공대 기준으로.. 전공 독학할 때 노베가 봐도 도움됨?
-
삼반수 1
삼반수 하시는분들 언제부터 시작하시나요
-
언제쯤 하나요???
-
영어월간지 0
고3 이고 영어 2등급 중반정도 나오는데 월간지 어떤게 좋을까요? 메가패스 이투스 패스 있습니다
-
재수생 새벽공부 3
비추?추?고추?
-
물1+물2 0
물2 공부해본 적은 없는데요. 물1+물2 로 지원 불가능한 대학이 있나요? 그냥...
-
왜... 0
Kold 헷지용으로 산 boil이 더 오르냐구 ㅠㅠ
-
컴온..!!
-
웰컴 투 더 쇼~~
-
그게 나야 바 둠바 두비두밥~ ^^
-
다 절판이라~~ 구할수가 없네요ㅠㅠ 가지고 계신분 있으시다면 구매하고 싶어요
-
ㅠㅠㅠ
-
요새 누군가가 자꾸 경제 영업을 시도하시는 것 같습니다 13
자꾸 이러시면 저도 3일동안 물2 공부를 시작할 수밖에 없습니다..
-
의치한버리고 1
설공가는사람들 있음? 계획이 어떻게 됨??
-
그래 올해는 연애에 집중해보자!
-
한마디만 할게요 2
물2화2 파티 절찬 모집중 너만 오면 고
-
등록포기 시간 지났는데 등록금까지 냈는데 등록 포기 가능할까요??
-
국어 97 수학 96 영어 1 세지100 사문99인데 원서 잘못 씀 중경외시...
-
걍 펑퍼짐한 추리닝 입어라 끼부리지 말고 ㅇㅇ 딱달라붙는거란 살 드러나는거 그만 좀 입어라
-
로블록스할사람?로블록스 로블록스할사람
-
근육이 다 빠진건가요 ? 심각한데
-
5꽉 ㄱㅈㅇ 0
차라리 딮기가 이겨라
-
월이랑 일 바꿔서 생일을 1년에 2번 축하하는거죠 아 근데 13부터는 못함 ㅅㄱ
이게 원래 테일러 급수 얘기이긴 한데
맞아요 그런 이름이었던 거 같네요
limx->0 sinx-tanx/x^3 같은 건 얘기가 달라지긴 하죠
아 그렇네요 어라
삼각함수를 다항식으로 근사하는 건 생각보다 큰 오류가 있습니다 ㅜㅜ
그렇네요 결국 노가다 뛰는 수밖에 없나....
근데 막 무지성 치환하려는건 아니고
덩어리가 좀 더러울 때 바꿔서 계산하려는 거였어요.
e^(xsinx)-1 이런거 e^x제곱 - 1로 바꿔서 계산하면 편해서요
수2 내용인 줄 알고 들어왔다가 깜짝 놀라서 뒤로가기 누른 통통이면 개추 ㅋㅋ
이거개추
캬캬캭
공부하세요
하는중
저것들이 곱으로만 연결되어있고, x가 0으로 가고있으면 가능
만양 저것들이 차, 합으로 연결되어있으면 인수 찾아내서 묶어내고 계수 계산해야해요
아 감사합니다
그런데 곱꼴과 합꼴의 차이가 발생하는 이유는 뭔가요?
차 꼴이면 0-0 꼴이니 진짜 0-0=0으로 처리하는게 불가능해요
분모나 분자에서 인수(x)가 약분 가능하려면 분모분자 각각 전체에서 동일한 인수가 곱해져있어야 가능한 점을 생각해시면 이해가 되실겁니다
선생님 차꼴이면 극한식이 부정형으로 나와서 x로 치환해서 계산하는 것이 불가능하다는 말씀이실까요?
네네 예를들어 a식-b식 꼴이면 a,b 각각을 치환해버리면 안된다는 거예요
감사합니다!
곱꼴이면 ㅇㅇ 빼기꼴이면 얘기가 달라짐
아하 감사합니다
ㅎㅇ 보공해
직각이네
sinx=x-x^3/6
cosx=1-x^2/2 (+x^4/24, 사실상 안나옴)
tanx=x+x^3/3
이렇게까지 외우고 빼기꼴에서는 적당히 써주면 되긴 해요
e^x=1+x+x^2/2인데 이건 그냥 일차항 이상을 쓸 일이 없고
당연히 삼각함수, 지수함수는 다항함수가 아니니까 저 뒤에 항이 더 있지만, 사차항 이상부터는 그 항들이 나올 상황을 만드는 것 자체가 어렵기 때문에 사실상 문제에 나올 일이 없어요
선생님 x가 0 근처일 때 sinx tanx 이런 애들이 y=x와 완전히 같진 않다는 말씀이신거죠?
그런데 sinx나 tanx가 x^3을 인수로 가지면
리미트 x가 0으로 갈 때 sinx/x=0으로 수렴해야 하는 것 아닐까요? 뒤에 상수항도 있는데 생략이 된건가요?
sinx=x-x^3/6+...이니까요
sinx/x는 (x-x^3/6)/x인 셈이고, 다항함수 극한으로 봐도 이건 1이겠죠
아 그렇네요 무한대/무한대 꼴이랑 헷갈렸나봐요 죄송해요 ㅠㅠ
그리고 y=x와 완전히 같지 않다는 게 맞아요
정확히 말해서, x=0 근처에서(사실 이 경우 실수 전체에서) sinx는 x-x^3/6+x^5/120...+(-1)^n * x^(2n+1)/(2n+1)!+...과 완전히 같아요
저건 그 사실을 근사적으로 나타낸 거에요
아하 감사합니다 되게 복잡한 내용이네요...
정리하면 곱 꼴에서는 sinx tanx <<<< 이런 애들 대신 x를 대입해도 되나,
합이나 차 꼴에서는 식을 적절히 변형하거나 선생님께서 알려주신 개략적인 식으로 직접 계산하는 방법이 있는거군요.
네, 정확해요