님들 0/0꼴의 극한에서
게시글 주소: https://orbi.kr/00072049881
sinx tanx ln(1+x) e^x-1을 x로 바꿔서 계산해도 되나요?
어차피 쟤네들 다 분모에 x 있으면 수렴하기도 하고,
수학 좋아하는 친구한테 물어보니까 x=0에서 저 함수들을 근사하면 y=x와 그래프가 일치한다고 해가지고...
위의 설명과 같은 맥락으로 1-cosx는 1/2 x (x^2)로 바꿔도 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
추합 질문 2
추합 마지막날 등록포기한 사람이 있으면 바로 전화추합에 반영되나요??
-
외대 자전 2
외대 자전 몇점까지 빠졌는지 아시는분 계신가요?
-
경한 5
-
제가 딱 예상한 언저리에서 끊길듯 전 55등 97.33으로 말씀드렸는데 이것보단...
-
건대는 영문인데 전과하려고요.. (이과임) 전컴은 좀 힘들것같아 그외공대로 전과...
-
쿨타임 돌았는데 함 달려?
-
중앙대 추합 2
오늘은 끝난건가요? 그리고 중경영 합격등수도 알려주시면 감사하겠습니다 ㅠㅜ
-
2026 뉴런 권당 5천원은 좋긴 한데 뭐지
-
.
-
어서와요 어이어이 기다리고 있었다구
-
취침 2
굿모닝
-
일단 1-1학기 열심히 다니고 반수하려고 합니다.. 반수 실패시 가능하면 공대로...
-
어디를 가야 하나요?
-
이른 저녁 ㅇㅈ 4
-
실력을 원한다. 1
흐흐흐
-
중앙대학교 소프트웨어학부 25학번 새내기를 찾습니다!! 0
안녕하세요 중앙대학교 소프트웨어학부 (준)제53대 학생회 ‘S_Way입니다. 힘들고...
-
호두어때 5
-
국민대 합격생을 위한 노크선배 꿀팁 [기숙사, 자취방, 하숙, 고시원] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
고속 대완승임 ㅋㅋㅋㅋ얼마만이냐
이게 원래 테일러 급수 얘기이긴 한데
맞아요 그런 이름이었던 거 같네요
limx->0 sinx-tanx/x^3 같은 건 얘기가 달라지긴 하죠
아 그렇네요 어라
삼각함수를 다항식으로 근사하는 건 생각보다 큰 오류가 있습니다 ㅜㅜ
그렇네요 결국 노가다 뛰는 수밖에 없나....
근데 막 무지성 치환하려는건 아니고
덩어리가 좀 더러울 때 바꿔서 계산하려는 거였어요.
e^(xsinx)-1 이런거 e^x제곱 - 1로 바꿔서 계산하면 편해서요
수2 내용인 줄 알고 들어왔다가 깜짝 놀라서 뒤로가기 누른 통통이면 개추 ㅋㅋ
이거개추
캬캬캭
공부하세요
하는중
저것들이 곱으로만 연결되어있고, x가 0으로 가고있으면 가능
만양 저것들이 차, 합으로 연결되어있으면 인수 찾아내서 묶어내고 계수 계산해야해요
아 감사합니다
그런데 곱꼴과 합꼴의 차이가 발생하는 이유는 뭔가요?
차 꼴이면 0-0 꼴이니 진짜 0-0=0으로 처리하는게 불가능해요
분모나 분자에서 인수(x)가 약분 가능하려면 분모분자 각각 전체에서 동일한 인수가 곱해져있어야 가능한 점을 생각해시면 이해가 되실겁니다
선생님 차꼴이면 극한식이 부정형으로 나와서 x로 치환해서 계산하는 것이 불가능하다는 말씀이실까요?
네네 예를들어 a식-b식 꼴이면 a,b 각각을 치환해버리면 안된다는 거예요
감사합니다!
곱꼴이면 ㅇㅇ 빼기꼴이면 얘기가 달라짐
아하 감사합니다
ㅎㅇ 보공해
직각이네
sinx=x-x^3/6
cosx=1-x^2/2 (+x^4/24, 사실상 안나옴)
tanx=x+x^3/3
이렇게까지 외우고 빼기꼴에서는 적당히 써주면 되긴 해요
e^x=1+x+x^2/2인데 이건 그냥 일차항 이상을 쓸 일이 없고
당연히 삼각함수, 지수함수는 다항함수가 아니니까 저 뒤에 항이 더 있지만, 사차항 이상부터는 그 항들이 나올 상황을 만드는 것 자체가 어렵기 때문에 사실상 문제에 나올 일이 없어요
선생님 x가 0 근처일 때 sinx tanx 이런 애들이 y=x와 완전히 같진 않다는 말씀이신거죠?
그런데 sinx나 tanx가 x^3을 인수로 가지면
리미트 x가 0으로 갈 때 sinx/x=0으로 수렴해야 하는 것 아닐까요? 뒤에 상수항도 있는데 생략이 된건가요?
sinx=x-x^3/6+...이니까요
sinx/x는 (x-x^3/6)/x인 셈이고, 다항함수 극한으로 봐도 이건 1이겠죠
아 그렇네요 무한대/무한대 꼴이랑 헷갈렸나봐요 죄송해요 ㅠㅠ
그리고 y=x와 완전히 같지 않다는 게 맞아요
정확히 말해서, x=0 근처에서(사실 이 경우 실수 전체에서) sinx는 x-x^3/6+x^5/120...+(-1)^n * x^(2n+1)/(2n+1)!+...과 완전히 같아요
저건 그 사실을 근사적으로 나타낸 거에요
아하 감사합니다 되게 복잡한 내용이네요...
정리하면 곱 꼴에서는 sinx tanx <<<< 이런 애들 대신 x를 대입해도 되나,
합이나 차 꼴에서는 식을 적절히 변형하거나 선생님께서 알려주신 개략적인 식으로 직접 계산하는 방법이 있는거군요.
네, 정확해요