-
어제는 가슴삼두 14
-
나도 이미지 적어줘 31
포텐셜은 이미 어느정도 알아서..
-
응..
-
학벌은 더더욱 희미해지는 거 같음 예전엔 무조건 학교 간판! 이런 느낌이 지금보다...
-
패스 사려는데 내 상황에 맞는거 추천 좀 대성vs메가 1
언매 미적 영어 생명1 지구1 13131 이고 국어영어는 어문학과 2학년 다니는...
-
주뱃 골뱃 그 위에 군림하는 크로뱃이라는 사실
-
알빠노
-
가버럿네
-
합격증 받았는데 과별로 톡방 같은거 보통 초대해주지 않나요? 그거 어떻게 하면...
-
늦게 자지 말기 0
돌돌돌
-
ㅈㄱㄴ..
-
여러부운 2
그거 아시나요오??
-
심심해
-
으헤헤 3
쵹쵹 으흐흐흐흐ㅡ 팟팟크흐 끼이이ㅣㄱ 힣 퍼ㅓ아이이ㅔㅇ 푸우우우으ㅡㄱㄱㄱ
-
교수 55% 교사 45%
-
요즘 배우는거 4
팔문둔갑
-
자.살하고싶다 9
할 용기는 없긴 한데 카르마와 윤회가 정말 있으면 좋겠다 잘난놈들 너무많네 열등감만...
-
오르비에서 우울글 싸는 애들이랑은 비교할 수 없을정도로 진짜 광기가 느껴졌음
-
25수샤 쓰다가 망가져서 추천좀여
-
5시 취침이 몸에 베서 잠이안온다
-
미미미누같은 유튭에서 영어이야기나오면 조정식 말고 00가 ㄹㅇ 고트임 ㅇㅈㄹ중임...
-
우울합니다
-
얘들아 치즈 탈르비함? 15
그병신
-
내 행복은 학벌이 아니었나봐
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
이 얼굴이 상위 30퍼라고? 내 최애 아이돌인데 본인은 상위 34퍼 나옴... 실망스럽네
-
잘 아는 사람만
-
어떤 원리로 함수가 결정된거냐 문제 만든 사람 정체가 뭐냐
-
잠 깼당
-
건대 반수 0
건대에서 삼반수 하려고 하는데 건대 1학년 1학기 최소학점이 1학점 맞나요? ㅈㅂ...
-
ㅜㅜ ... 동생 보는데 맘아픔 재발한 거 같은데 어케 안 되나..
-
동시에 아픔을 수반하는 것과 같다 사랑을 하지 않았다면 아프지 않았겠지만 내가 지금...
-
241122 1
보면 볼 수록 대단한 문제군,누가 만들엇을까
-
노베 2년 현실 8
은 나 일듯 2년해서 홍대옴 ㅋㅋ 금대갈들 부럽다 ㅅㅂ
-
나선닮음의 중심이 Miquel Point임 ㅋㅋ
-
저 대학 한번에 아니면 재수해서 가려고 하는데 평균 내신이 6등급인데 28수능 전에...
-
일단 본인 소개: 25 수능 현역 본인기준 말아먹고 고려대 합격 등록까지 완료....
-
롤재밋당 2
최고야
-
ㅇ,헤헤 2
ค็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็...
-
주말 의대반 0
가보신 분? 물어볼게 좀 있어서
-
영어 0
션티 쌤 커리 타는데 키스로직 vs 키스키마 베이직 고2입니다
-
설의 포기한사람 5
엄마랑 뒤지게 싸우고 엄마는 충격으로 병원갔다네용
-
내일보자 2
오늘 그만 본다는 말은 아니고
-
재밋을듯
-
님들 그거 알았음? 24수특문학 '원미동 시인'에 몽달 씨 두들겨 맞을 때 방관한...
-
옯컹컹컹 13
&(&(&(&&@@###*%*^$$ 챱챱챱
-
중경시부터는 차마 내가 넘볼수조차 없는 너무 큰 벽이라 열등감도 느끼지 못했음
-
그럼내년에.. 이게아닌가?
-
응 3수 ㅁㅌㅊ?
헉,, 이게 아직 안 풀렷군
옆에 있는 놈한테 물어보면 안되겠죠?

이게 아직까지도 안 풀리고 있었네주어진 문제 풀이
1. 함수 g(x)의 도함수 g'(x) 구하기
주어진 함수 g(x)는 다음과 같습니다.
g(x) = (2xf(x)) / (x^2 - 1)
몫의 미분법을 이용하여 g'(x)를 구합니다.
g'(x) = [ (2f(x) + 2xf'(x))(x^2 - 1) - 2x(2xf(x)) ] / (x^2 - 1)^2
식을 정리하면,
g'(x) = [ 2f(x)(x^2 - 1) + 2xf'(x)(x^2 - 1) - 4x^2f(x) ] / (x^2 - 1)^2
g'(x) = [ 2f(x)(x^2 - 1 - 2x^2) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2
g'(x) = [ -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2
2. 방정식 g'(x) + f''(x) = 0 분석
주어진 방정식은 다음과 같습니다.
g'(x) + f''(x) = 0
위에서 구한 g'(x)를 대입하면,
[ -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2 + f''(x) = 0
양변에 (x^2 - 1)^2을 곱하면,
-2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) + f''(x)(x^2 - 1)^2 = 0
3. 중간값 정리 적용을 위한 함수 정의
새로운 함수 h(x)를 다음과 같이 정의합니다.
h(x) = -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) + f''(x)(x^2 - 1)^2
그러면 주어진 방정식은 h(x) = 0이 됩니다.
4. h(x)의 특정 값 계산
* h(0) 계산: f(0) = 0이므로 h(0) = f''(0)(-1)^2 = f''(0) 입니다.
* h(x)의 극한값 계산: x가 1 또는 -1에 가까워질 때, (x^2 - 1) 항 때문에 h(x)는 발산합니다.
5. 중간값 정리 적용
* 경우 1: f''(0) = 0 인 경우
h(0) = 0 이므로 x=0은 방정식 h(x)=0의 해가 되어 실근이 존재합니다.
* 경우 2: f''(0) > 0 인 경우
h(0) > 0 이고, x가 1 또는 -1에 가까워질 때 h(x)는 음의 무한대로 발산합니다. 따라서 구간 (-1, 0)과 (0, 1)에서 중간값 정리에 의해 h(x) = 0인 실근이 각각 적어도 하나 존재합니다.
* 경우 3: f''(0) < 0 인 경우
h(0) < 0 이고, x가 1 또는 -1에 가까워질 때 h(x)는 양의 무한대로 발산합니다. 따라서 구간 (-1, 0)과 (0, 1)에서 중간값 정리에 의해 h(x) = 0인 실근이 각각 적어도 하나 존재합니다.
결론
어떤 경우든 열린 구간 (-1, 1)에서 방정식 g'(x) + f''(x) = 0의 실근이 존재합니다.
gpt검거
Gemini임
맞는 풀이라 보기 어려울 듯 합니다ㅠ
Ai이자식
아
x=0이 실근인가요