회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00072017781
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
댓글에 자는 이모티콘 달아주세요
-
아님 랄로..
-
판 이름이나 해류 이름처럼 암기성 짙은 내용을 말하는건가요? 아니면 교과외 내용을 말하는건가요?
-
경험상사회생활이나연애에서큰불편없습니다 키로disadvantage받지않아요
-
루루부 (룰북)
-
냥도체 가고싶다 8
원래도 가고싶었는데 냥도체님 글 보고 더 가고싶어짐..
-
키 174.x가 제일 작은거고 아빠 큰아버지 사촌형 다 170후반~180대임......
-
전 순대 싫어함 10
어릴때 마트에서 순대 시식코너 있길래 먹어봤는데 맛 없어도 그냥 씹어서 삼키려고...
-
엄마가 사준거 몇 개 돌려입는중... 호박에 줄 긋는다고 수박되냐.
-
바디워시부터 버려라.
-
ㅈㄴ 역겹네 진짜
-
인스타에서 그렇다는데 진짜면 수시가 더 빡센거같은데?
-
잘려고 쳐먹는지 모르겠네
-
아니요그게아니라동국대와이즈캠퍼스라고경주에있는의대가하나있는데아니경주는아니고일산에병원이있긴해요.
-
야식 ㅇㅈ 4
밥 없는 유부초밥과 생라면 먹기
-
내가 예전에 중학교 내신시험 하루전 벼락치기때 썼던 방법인데 필기하자니 딴생각은...
-
딱히속상하진않은데착한오르비언들사이에음침한새끼들몇명껴있다는게의식돼서뭔가내얘기는잘안하게될거같음
-
학사+대성학원 컨텐츠비+식비 나머지 다른 책값 같은 건 뺴고 일단 고정지출로 나가는...
-
우우
오르비 불타나
머야 안 나갓네
할말은 해야죠
병신에게 먹이 금지라는데요?
일단 모르겠고 올려
![](https://s3.orbi.kr/data/emoticons/2020_foolsday/oribi/001.gif)
캬 UFC 열린다![](https://s3.orbi.kr/data/emoticons/2020_foolsday/oribi/001.gif)
안읽고 팝콘만 뜯으면 7ㅐ추ㅋㅋㅋㅋ
수의대생 강아지님 귀여우니까
글 내리세요
ㄹㅇㅋㅋ
ㅈㄴ부엉이한테도 저격 당했던데 이사람
진짜 건수가 지방수에 비해 메리트 없음여?
있을이유가 있음?
서울라이프
약간 인설약/지방약이 생활 말고 차이 없는거랑 같은개념일듯 여기도
수의대는 지역별로 차별화가 잘 되어있어서 메리트라기 보단 차이점이 있죠
경희치 경희한 인설약 인설수는
그냥 솔직히 서울에 있는게 메리트의 9할이죠
그나마 경한 설약 설수는 뭐 간판에 내걸기 용이하다 정도..?
경한 설수는 다르긴 한 듯
좀 쳐나가라
그래 이제 진짜 갈게
꼭 좋은 수의사 되거라 아가야
![](https://s3.orbi.kr/data/emoticons/2020_foolsday/oribi/001.gif)
팝콘 가져와잇넌 혐오의 시대랑 같이 놀아라 좀
내가 그 정도냐?
ㅇㅇ...
이 분은 설수의라도 되는데
혐오의 시대 그 놈은 아무것도 아닌 놈인데
리얼팩트
--------------------------
기습 O/X 퀴즈(5000덕)
함수 f(x) = 0 (x < 0), f(x) = g(x) (x >= 0) 을 생각해 보자. ‘f(x)가 실수 전체에서 연속이다’라는 조건이 주어졌을 경우, g(x)가 될 수 있는 함수는 아주 다양하다. 사실, 수능 3점 문제를 맞출 수 있는 사람이라면 g(0)=0인 모든 연속함수 g가 조건을 만족시킴을 바로 알 수 있다. ‘f(x)의 도함수가 실수 전체에서 연속이다’, ‘f(x)의 이계도함수가 실수 전체에서 연속이다’와 같은 조건이 주어지더라도, g(x)가 될 수 있는 함수는 각각 g(x)=x^2, g(x)=x^3과 같이, 상수함수 g(x)=0을 제외하고도 여러 가지가 있음을 알 수 있다.
하지만 만약 ‘모든 자연수 n에 대해, f(x)의 n계도함수가 실수 전체에서 연속이다’라는 조건이 주어졌다면 어떨까? 우선 g(x)가 상수함수가 아닌 다항함수라면 최고차항 ax^m을 가질 것이고 이때 g(x)의 m계도함수는 x=0에서 0이 아닌 값을 가지므로, g(x)가 다항함수일 수는 없다. 그렇다면 g(x)=0을 제외하고 f(x)가 위의 조건을 만족하게 하는 ’함수‘ g(x)는 존재할까?
g(x)의 존재성을 증명하거나, 존재하지 않음을 증명하시는 첫 번째 분께 5000덕을 드립니다.
-------------------------
g(x)=0 (x = 0), g(x)=e^(-1/x) (x > 0)
이게 바로 나오네;;
어디서 보신 적이 있는 건가요?
무한번 미분햇을때도 그대로면 e^x 계열이라 생각해서 생각해봤는데 지수가 x면 기울기 1이라 모순
지수함수는 음의 무한대로 갔을때 기울기 0이니까 지수 -1/x로 맞추면 되겠더라고요
직관이 엄청나시네요
엄밀하게 미분은 안해봤는데 느낌상 찍었는데 운이좋았네용
이게 왜 ox야
일단 존재한다/아니다 니까...
근데 답 증명하는 게 아니면 걍 누가 먼저 찍냐 싸움이라 저렇게 쓴거에요
맞는 거 같아요
힝
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
평소 이미지 덕분에 수의대강아지님의 승리!
이거 보고 교대 가기로 했다
도파민내놔
ㅋㅋㄱㅋ
니마 좀 진정좀 하시구여
애초에 저 글은 님을 특정해서 한말도 아니구용 ...
연봉이야기 안한지 꽤됐고 거의 3년...?
페이로 연봉 2억이야기는 지분인데다가 극소수만 받아간다고 갠쪽오시는 분들께 말씀 자주 드렸구용
도대체 왤케 열내는 거임!!!!!!
그리고 님이 백날 여기다가 단점 적고 현실현실 거려도 아무것도 안바뀌어요
애초에 저도 오르비에 그냥 수의사가 되면 주로 무얼하는지 위주로 알려주는데 뭔소리하심 ...
저는 단한번도 한의사 약사보다 하방 안전하다느니 상방이 쉽다느니 해본적없어요 ;
그리구 제가 오르비 몇년째 하고있는데
님처럼 열내면서 소모적인 싸움 하고싶지않구요
커뮤에 진심을 담아서 자꾸 하시는 것같은데
시간이 꽤 지나고 나면 내가 왜 그랬었지 하실겁니다
근데 내용에 대한 반박도 없이 응 병먹금~ ㅇㅈㄹ 하는데 열받긴 할듯 ㅋㅋㅋ
에휴이
팩트는
공부 ㅈ빠지게 해서 수의대갈 바에는
가성비 좋게 교대 간다는 것임.
ㅗ
ㅋㅋㅋ 인물은 내면세계대로 생각하고 행동한다
형 저새끼랑 싸워봐
조용한날없는오르비
![](https://s3.orbi.kr/data/emoticons/almeng/010.png)
혈관에 전투 dna가 흐르시네 ㄷㄷ