[수학칼럼] 음함수 미분
게시글 주소: https://orbi.kr/00071976442
안녕하세요 저능부엉이입니다
오늘은 음함수 미분에 대해 공부해고자 합니다
사실 전에도 같은 내용으로
칼럼을 올렸지만 블라인드를 당했기에
좀 더 내용 보충해서 올리게 됐습니다
음함수 미분에서 강조할 점은
변수간의 관계 파악
만이 있습니다
이게 무슨 말이냐면
241127입니다
이문제에서 주어진 데로 먼저 식을 세워봅시다
여기서 k는 접점의 좌표입니다
그럼 k에 대해 생각을 해봅시다
k는 t의 따라서 값이 달라집니다
한마디로 k는 t에 대한 함수라고 볼 수 있는것입니다
그렇다면 이런식으로 둘 수 있겠네요
k를 g(t)로 둔 것입니다
이후 식을 나눠봅시다
이렇게 두 개의 식이 나왔습니다
여기서 주목할 점은 f(t)값을 구하기 위해서는 g'(t)값이
필요한 상황이고 문제에서 t와 g(t)값은 주었습니다
(f(a)=-e^3/2에서 그 시점의 t값과 g(t)값 구할 수 있음)
따라서 g'(t)값을 구하기 위해 왼쪽 식을 미분하고
값을 구한후 대입만 하면 답이 나오게 됩니다
이 문제에서 보여드렸듯이 음함수 미분 문제에서는
만약 f'(t)에 값을 구하라고 하면
1.t에 대한 변수
2.구하고자하는 함수에 관한 식
3.t와 변수의 관계식
4.정답상황에서의 t와 변수의 값 정보
가 주어지게 됩니다
보통은 문제가
1.t에 대한 변수 설정하기
(앞의 문제에서는 변수가접점이있음)
2.구하고자하는 함수에 관한식 세우기
3.t와 변수의 관계식 세우기
4.정답상황에서의 t와 변수 값 정보를 식에 넣어서 얻기
5.미분, 대입
의 방식으로 문제가 풀리게 됩니다
다른 문제로도 보여드리자면
240930입니다
아까 말했던 대로 먼저 세타에 대한 변수로 선분CP을
k(세타)로 두겠습니다
이후 k에 대한 식과 넓이에 관한 식을 뽑아 보겠습니다
이렇게 되는군
이후 두번째 식을 사용해 정답상황에서 k값을 구하면
다음과 같습니다
이후 첫째 식과 둘째 식을 미분하고 대입하면
이렇게 바로 답이 나오게 됩니다
비슷하게 230929도 풀어봅시다
먼저 s를 t에 대한 변수로 보고
s와 t에 대한식, g(t)에 대한 식을 뽑으면
최소가 될때 s에의 접선과 (t,0) 이 수직인점을 이용하면
이렇게 둘 수 있습니다
h'(1)=1/g'(h(1)), s가 0일때 g(t)가 1이기에
정답상황에서 s(t)=0, 대입하면 t=2입니다
따라서 우리는 g'(2)의 값을 구해야 합니다
이제 두 식을 미분하고 대입하면
이렇게 간단히 답이 나오게 됩니다
하나 유의할점은 s를 굳이 s(t)로 두지 않아도 됩니다
s'(t)를 ds/dt로 생각하면
이런식으로 똑같이 답이 나오게 됩니다
단지 유의할 점은 s가 t에 대해 변화하는
일종의 함수임을 명심해야하는것입니다
오늘은 음함수에 관해 알아봤습니다
앞에서 말했듯 식 두개 세우고,
변수 설정하는게 다인 유형입니다
특히 변수간의 관계가 중요하기에 앞에서같이
s를 s(t)로 두는것처럼하면 t와의 관계를 더 잘
관찰 할 수 있습니다
다들 읽어주셔서 감사하고 다음에도
좋은 칼럼으로 돌아오겠습니다
좋아요는 큰 힘이 됩니다
[수학칼럼] 정보의 용도 파악 - https://orbi.kr/00071112142
[수학칼럼] 등차수열 정복하기 - https://orbi.kr/00071505271
[수학칼럼] 부정적분에서의 극값 - https://orbi.kr/00071715995
[수학칼럼] 수2-속도,가속도 - https://orbi.kr/00071862179
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋게 생각할래 1
아직 아무것도 모르는 새내기 25학번인 나는 대학에 입학하면 수많은 여학우들과...
-
엉엉 탐구때매 머리아파요
-
내 300만원 어디감
-
학원에서마냥 무지성 암기보단 단어를 외우더라도 예문을 보고 그 단어를 한국어 뜻보단...
-
새르비 좋당 0
평화로워
-
아직은 너에게~ 0
추억이 되는게~
-
고1 11월 이때까지도 근본이 없엇음. 근데 이때쯤 되니 원서를 봐야하는 상황이...
-
모태솔로는 이제 설 곳이 없구나.
-
주변에 여성 지인이라고는 1도 없는 수학으로 치면 기탄수학부터 해야할상태인 노베인...
-
같이 느낄 여르비 구함
-
밥주 2
ㅜㅜ
-
이게 남들 연애썰 하나씩 들을때마다 기억이 되돌아와 뭔가 기억하면 안될게...
-
이거 어떻게 못하나요? 실명이랑 생년월일을 다르게 입력해서 다시 정정하려고 보니까...
-
중등 수악 잘 모르는 상태엿지만 수학 상 수학 하, 수학 1로 떼웟음 중등 삼각비...
-
난 자만추파임 2
소개 받으면 항상 망해서 그런거 아님
-
나 사실 방금 7
롤하닥 ㅏ키보드에 하이볼 업질러서 나간거임 미안하다
-
공부해본 적 없음. 다른 과목은 당연하고 중등 수학 개념도 반은 모름 특히특히...
-
설랬던 기억 0
침대에 누워서 럽코 소설보면 설레긴했었음
-
나 진짜 열심히 할거니까 미팅이라도 잡아줘
-
연애메타를 보는 본인 11
소설읽듯이 읽음
-
진짜 개 잣밥임 미친 성장속도라는거임
-
첫사랑썰 4
과거로 돌아가면 기억나겠지 지금의 나는 기억이 안난다 사실 그리고 저는 첫사랑이랄...
-
텍사스홀덤을 꼭 한 번 해보세용 진짜 재밌음 이건
-
패드 ㅇㅈ 0
-
거북이 키우는데 지금 울음소리는 아닌것같고 새벽3시에 거북이쪽에서 소리남 집이...
-
연애 안해봣음 4
썸도 안 타봄 짝사랑도 안해봣음 좋아하는 사람 잇엇던 적 없음
-
부엉이가 좋다
-
하아
-
도대체 어떻게 기만이야
-
짜증나죽겟음
-
매번 늦어도 이해할게누굴 만났니 먼저 묻지 않을게고집스런 내 사랑너의 말은...
-
밤에 친구랑 만나서 연애 썰 듣는데 친구가 자기 여친한테 셀카를 찍는거임 그래서...
-
너무 많이 먹었나 머리가 띵하고 손발이 오들오들 셀리한테는 이상한 얘기를 마구마구...
-
성적같은거 보나요? 정확히 뭘 보는건가요?
-
해볼까
![](https://s3.orbi.kr/data/emoticons/rabong/020.png)
드디어 음란함수가 아니군요왜 하트 없냐
하트 어디감
왜 정상적임?
왜 음함수의 허리가 활처럼 굽었다가 아니지?
기대하고 왔는데 팍 식으면 개1추 ㅋㅋ
이제 또 게이글 권한 +5를...
음탕함수 ㅇㄷ
글쓴이가 맛있고 칼럼이 좋네요
t를 일리리 움딕여보면서 관찰 일리리
![](https://s3.orbi.kr/data/emoticons/oribi_animated/006.gif)
손필기가 제일 이쁜 분 ㄹㅇ 필기노트 조교 지원 생각해보십쇼 이 정도면 재능이라고 생각함다원래글 박제해도 될까요(?)
무튼 잘 봤습니다
저런 필기는 패드에다 애플펜슬로 쓰는건가요? 짱예쁘세요
고마워요
아이패드에 애플펜슬로 하고 있어요
중학수학 칼럼도 적어쥬세요
중학교는 잘몰라요
좋은글 감사요
대체 어떻게 하면 칼럼을 올렸는데 블라를 먹냐고 ㅋㅋㅋㅋㅋㅋㅋ