[수학칼럼] 음함수 미분
게시글 주소: https://orbi.kr/00071976442
안녕하세요 저능부엉이입니다
오늘은 음함수 미분에 대해 공부해고자 합니다
사실 전에도 같은 내용으로
칼럼을 올렸지만 블라인드를 당했기에
좀 더 내용 보충해서 올리게 됐습니다
음함수 미분에서 강조할 점은
변수간의 관계 파악
만이 있습니다
이게 무슨 말이냐면
241127입니다
이문제에서 주어진 데로 먼저 식을 세워봅시다
여기서 k는 접점의 좌표입니다
그럼 k에 대해 생각을 해봅시다
k는 t의 따라서 값이 달라집니다
한마디로 k는 t에 대한 함수라고 볼 수 있는것입니다
그렇다면 이런식으로 둘 수 있겠네요
k를 g(t)로 둔 것입니다
이후 식을 나눠봅시다
이렇게 두 개의 식이 나왔습니다
여기서 주목할 점은 f(t)값을 구하기 위해서는 g'(t)값이
필요한 상황이고 문제에서 t와 g(t)값은 주었습니다
(f(a)=-e^3/2에서 그 시점의 t값과 g(t)값 구할 수 있음)
따라서 g'(t)값을 구하기 위해 왼쪽 식을 미분하고
값을 구한후 대입만 하면 답이 나오게 됩니다
이 문제에서 보여드렸듯이 음함수 미분 문제에서는
만약 f'(t)에 값을 구하라고 하면
1.t에 대한 변수
2.구하고자하는 함수에 관한 식
3.t와 변수의 관계식
4.정답상황에서의 t와 변수의 값 정보
가 주어지게 됩니다
보통은 문제가
1.t에 대한 변수 설정하기
(앞의 문제에서는 변수가접점이있음)
2.구하고자하는 함수에 관한식 세우기
3.t와 변수의 관계식 세우기
4.정답상황에서의 t와 변수 값 정보를 식에 넣어서 얻기
5.미분, 대입
의 방식으로 문제가 풀리게 됩니다
다른 문제로도 보여드리자면
240930입니다
아까 말했던 대로 먼저 세타에 대한 변수로 선분CP을
k(세타)로 두겠습니다
이후 k에 대한 식과 넓이에 관한 식을 뽑아 보겠습니다
이렇게 되는군
이후 두번째 식을 사용해 정답상황에서 k값을 구하면
다음과 같습니다
이후 첫째 식과 둘째 식을 미분하고 대입하면
이렇게 바로 답이 나오게 됩니다
비슷하게 230929도 풀어봅시다
먼저 s를 t에 대한 변수로 보고
s와 t에 대한식, g(t)에 대한 식을 뽑으면
최소가 될때 s에의 접선과 (t,0) 이 수직인점을 이용하면
이렇게 둘 수 있습니다
h'(1)=1/g'(h(1)), s가 0일때 g(t)가 1이기에
정답상황에서 s(t)=0, 대입하면 t=2입니다
따라서 우리는 g'(2)의 값을 구해야 합니다
이제 두 식을 미분하고 대입하면
이렇게 간단히 답이 나오게 됩니다
하나 유의할점은 s를 굳이 s(t)로 두지 않아도 됩니다
s'(t)를 ds/dt로 생각하면
이런식으로 똑같이 답이 나오게 됩니다
단지 유의할 점은 s가 t에 대해 변화하는
일종의 함수임을 명심해야하는것입니다
오늘은 음함수에 관해 알아봤습니다
앞에서 말했듯 식 두개 세우고,
변수 설정하는게 다인 유형입니다
특히 변수간의 관계가 중요하기에 앞에서같이
s를 s(t)로 두는것처럼하면 t와의 관계를 더 잘
관찰 할 수 있습니다
다들 읽어주셔서 감사하고 다음에도
좋은 칼럼으로 돌아오겠습니다
좋아요는 큰 힘이 됩니다
[수학칼럼] 정보의 용도 파악 - https://orbi.kr/00071112142
[수학칼럼] 등차수열 정복하기 - https://orbi.kr/00071505271
[수학칼럼] 부정적분에서의 극값 - https://orbi.kr/00071715995
[수학칼럼] 수2-속도,가속도 - https://orbi.kr/00071862179
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니 이거 근데 오른쪽 눈은 눈무링 안나고 왼쪽눈만 눈물이 자꾸 고이고 뿌옇게 보이고 이러는데 3
이거 진짜 이항한거 아님?
-
네임드는 이 시간에도 무물글이 5분만에 저렇게 차는구나 4
이게 고닉인가...
-
할수이ㅛ다
-
일취클 피램 다 띁나면 사모로 넘어가는게 맞을까요?
-
애반가요??
-
피로도 다쓰고 캐릭터 생성제한도 걸려서 더 할게없네
-
1. 고전논리는 완전함2. 산술체계는 고전논리로 나타낼수 있음3. 산술체계는 완전함...
-
무엇이든 물어보아주세요 13
선넘질 ㄱㄴ 선넘질 ㄱㄴ은 쉽게 오지않습니다.
-
굿나잇 2
ㅃ
-
일클 취클 문학 피램 풀건데 고전시가는 인강or문풀중 뭐가 좋을까요?인강추천한다면...
-
졸리니까 1
운동
-
지금까지 안잤네 진짜 어카지 조졌다 하…..
-
막 부모님이랑 싸우다가 부모님이 화내면서 님들 소중한 물건 찢거나 버리거나 한적...
-
국어가 장애인급이면 반수 접는게 맞음?
-
오야스미 0
네루!
-
국어가좃같은데반수접을까그냥
-
이렇게 곁에 있는데도 저 멀리 보이는데 그래도 괜찮아 꿈이어도 괜찮아 지금만큼은...
-
아 춥다 스벌 2
우어어
-
기병 is so cute 이거 아직도 하시나요? ㅈㄱㄴ
-
모닝 짤 0
-
211021 논증 풀이 19
D에서 직선 AB에 수선 내리자. (수선의 발 F), 그럼 A,E,F,D도 한 원...
-
님들 안자네 0
키 안큰다 쪼.꼬.미~?
-
시발아 풀로 준비한덧도 아니고 90일정도준비했는데 과는 원하는과왔잖아 안그래? 하좀그만
-
https://youtu.be/kmDl63UBqyo?si=zOh2IrMfxSZTMme...
-
너무 심하게 하는 애가 있는지 끊어내야 할지 고민됨 인생 관련해서 푸념하면서 계속...
-
무조건 취업 빨리 하라고 강요하지 않는 집안 자식이어서 다행이다
-
해보도록 해야지
-
라인 한개 이상 억까보고 대학 가니까 지금 대학이 ㅈㄴ 싫다 진짜 자살말린다 진힘
-
tmi 7
나는 오르비를 할 때, 웹을 3개 이상 켜놓음.하나는 공부 관련 글, 칼럼같은거...
-
삼장좋아햇어 근데 갑자기 흑화한거보고 좀 충격먹었긴한데 개인적으로 마녀가...
왜 하트 없냐
하트 어디감
왜 정상적임?
왜 음함수의 허리가 활처럼 굽었다가 아니지?
기대하고 왔는데 팍 식으면 개1추 ㅋㅋ
이제 또 게이글 권한 +5를...
음탕함수 ㅇㄷ
글쓴이가 맛있고 칼럼이 좋네요
t를 일리리 움딕여보면서 관찰 일리리
원래글 박제해도 될까요(?)
무튼 잘 봤습니다
저런 필기는 패드에다 애플펜슬로 쓰는건가요? 짱예쁘세요
고마워요
아이패드에 애플펜슬로 하고 있어요
중학수학 칼럼도 적어쥬세요
중학교는 잘몰라요
좋은글 감사요
대체 어떻게 하면 칼럼을 올렸는데 블라를 먹냐고 ㅋㅋㅋㅋㅋㅋㅋ