재업) 거리곱
게시글 주소: https://orbi.kr/00071918899
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
부호는 알아서 판단해서 붙이면 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
두 과목 전부 노베이스(4등급 이하) 기준으로 목표가 2등급이라는 가정 하에 무슨...
-
나가뒤지고싶다 15
난잘못한개없는데 잘못태어났나
-
나빼고 누구나 다 하는데 이게 자랑할만한 일은 아니지..
-
ㅋㅋㅋ 좀 자라 6
넹
-
비유전을 학원에서 하도돌려가지고 안틀리는데 유전만 해결하면 되는데… 이 유전이...
-
ㅈ댓네... 0
할거 다멋햇는데 스카 시간이 끝나벌이뮤ㅠ
-
나만 신기함? 엄청 하는거 같진 않은데 그냥 다들 여기저기서 만나서 꽁냥대다가...
-
루저. 외톨이 1
센 척 하는...
-
근데 너무 심연같아
-
각이다
-
경제장점 1
했다 튀었지만 이거 하면서 사문 도표푸는 감각 엄청 늘었음 사문 도표준비 2월에...
-
분명시발 05는 현역이었는데
-
계속 똑같이 사랑하는거면 찐사인가요?
-
평가원 96 이상들인가
-
이감이 하도 좋다길래 오프로해살까햇는데 간쓸가 아까워서 걍 바탕 사봄 후기 남겨볼게요
-
내신 수행도 있고 겸사겸사 풀어보려는데 며칠 잡고 풀까여
-
매력을 사회성, 도덕성으로 만들려는 사람들은 끝이 안좋습니다 항상
-
엔제 추천 빨리 . . 12
자기전에 주문넣어야함 . . 이해원이랑 사규 풀었음 . .
-
많관부!
-
인어공주 원작에선 왕자의 결혼을 축하해주고 불멸의 정령이 되어 승천하는...
-
귀신꿈 꿧음 1
귀신이 꿈에 나와서 나랑 같이 으흐흐 햇음
-
현실에서 만들긴 어럽지만 오르비같은 인터넷에선 저처럼 다양한 가상의 페르소나를...
-
몰입이 하고 싶어여
-
매력이없는거같음 다 나 싫어하는거같음ㄹㅇ..
-
제발 참아줘
-
국어의안정화 6
문과황의 조건
-
옯스타 12
맞팔해요 orbrora7
-
수업 들어보면 별거 업ㄱ는 문젠데 처음 풀때는 무슨 중학생이 와도 할거같은 풀이밖에 안나옴
-
그만 기다리기
-
꼴리는 대로 낸 문제 나보다 똑똑한 사람들 모여서 출제의도 토론을 한다고
-
유교 사상가들 구분 해야되나요? 그냥 유교로 놓고 풀면 안되나여 이때까지 그렇게...
-
그래도수능은절대 4
안칠거임 그전에뒤질가능성이매우높음..
-
다시 달려보자..
-
그런 행사가 9월에 있었나
-
엘클 개재밌네 1
바르샤 ㄴㅇㅅ~~~!!
-
기습질받 1
선넘질받
-
ㅈ르투아 사모라상 컷
-
연애 ㅎㅎ 5
할틈이없는인생 ㅅㅂ
-
작년9평때느꼈음
-
안 자 3
씨발
-
높2에서 낮1 진동하는 쪽인데 준킬러랑 킬러n제 같은거 풀때 어느정도 시간으로...
-
초록노프사
-
맞음 인생도망한거맞고 만만한거도맞음..
-
이런것도 그냥 뭔가 손으로 쓰려고 하면 안보이는디 걍 머리로 생각하다보면 닮음이라...
-
사문 개념 전체 5시간 컷 이게 섹스가 아니면 뭐임 윤씨는 40시간 가까이 하는걸...
-
수학 실모 추천 1
수학 실모 추천 해주세요
-
ㅅㅂ 그게 말이되냐고
이거 에제가 잇어야함, 이걸로는 이 거리곱의 마법을 이해할 수 없음

그런가딱히 예제가 생각 안낭..