이거 증명가능한가요? (수학)
게시글 주소: https://orbi.kr/00071880009
모든 실수 x에 대해 f(x)>=0일 때, f(a)=0이면 f'(a)=0이다.
f(x)가 미분가능한 함수일 때 한정하여 성립하는 것인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋ 6
천연가스 갭상 ㅋㅋㅋ
-
인생 ㅈ같다 5
전철에 치이면 흔적도 안남으려나
-
난 쌍성이 아니군
-
수능이더중요함 예상댓글) 안 하는 게 아니라 못 하는 거 아님?
-
월간지 없으면 사실상 공부할게 없더라고요 현역때 기출만파서... 인강은 순삽만...
-
이럴리가
-
설의가 친구인 나 어떤데 ㅋㅋ
-
원래 이시기 이시간대에 오르비를 잘 한 적이 없어서 그런가 이정도로 리젠 없는건...
-
기상했습니다 4
룰할루루자동완성어케업ㄱ애는 건지 모르겠다 이제는
-
현역 국어 수학 44 였구요 재수 때는 수학을 거의 안 해서(예체능입니다) 45...
-
응응….
-
어떰
-
얼버기 4
미소녀 기상 완☆
-
ㅇㅂㄱ 4
-
연애고 뭐고 3
난 공부나 열심히 해야지..
-
물2 물1학습 4
물2하기전에 물1 배기범 퍼스트 기초입문으로 충분할까요?
-
난 졸업언제하냐 3
사실 개강부터 포기함
-
리젠 망햇네 3
에휴이
-
운명의 짝을 발견하쟈
-
정법 장점:재밌음, 본인이랑 잘 맞는듯, 답이 딱 떨어짐 단점:고인물.고수들...
네 맞는듯
미분가능한 함수면 성립하죠
뭔가 제 선에서 수학적으로 엄밀하게 증명은 못하겠지만.. 맞는거 같아서 써먹는 중입니다
|x| 라는 반례가 있으니..
미분가능하다는 전제가 없으면 x=a에서 극점 갖는다만 성립하고 미분가능하면 f'(a)=0까지 되는듯요
저 내용 쓰는문제 은근 많던데
수2에 많더라고요 ㅎㅎ
어제엔티켓미적푸는데 있었음
오호..