3월 모의고사 대비 수학 실전 모의고사 배포 (자작) (22 문항)
게시글 주소: https://orbi.kr/00071826639
2025학년도 대학수학능력시험 3월 모의평가 문제지.pdf
2025학년도 대학수학능력시험 3월 모의평가 답지.pdf
안녕하세요. 원 점입니다. 약 한 달 동안 준비했던 2025 3월 모의고사 대비 실전 모의고사를 배포하고자 합니다.
팀이 아닌 모두 혼자 제작 및 검토한 문항으로, 15번과 21번은 불가피하게 사전에 공유했던 문제를 사용했습니다.
하지만 이외의 문제는 모두 새롭게 만든 문제임을 알려드립니다. 오류가 있는 경우 알려주시면 감사하겠습니다. :)
2025학년도 수능을 친 06년생으로써, 교육과정평가원에서 출제한 6월, 9월, 수능 수학 문제지의 공통 문항의 난이도는
6월, 수능, 9월 순서라고 생각합니다. 07년생 학생 여러분이 이와 비슷한 난이도를 경험할 수 있도록, 모든 문제지를
참고하여 최대한 수능에 가까운 난이도를 구상하기 위해서 노력하였습니다. 교육과정평가원에서 만든 문제지를
참고하며 만들다 보니 문제가 비슷한 느낌이 들 수 있습니다. 하지만 푸시면 다른 느낌을 받을 수 있다고 생각합니다.
제가 생각하는 2025 수능 수학은 "그리 어렵진 않았으나, 실수할 수 있는 부분이 많았다."입니다.
이러한 제 생각을 바탕으로 실전 모의고사를 제작했음을 알려드립니다.
아래는 주요 문항에 대한 코멘트가 있습니다. 문제를 풀어보시고 보시는 것을 권장합니다.
[5지선다형]
9월과 수능에서 출제되었던 로그의 연산 문제인데, 약간 아쉬워서 조금 귀찮아 보기에 만들었습니다.
계산을 해도 되지만, 두 수 중 한 개의 수가 1이면 합과 곱의 차는 1이 된다는 점을 안다면 쉽게 넘어갈 수 있습니다.
9월과 수능에서 출제된 정적분의 계산 문제입니다. 모의고사에서는 단순 계산으로 출제되었습니다.
하지만, 그와 다르게 이차 함수의 특징을 이용하여 푸는 문제로 만들어 보았습니다. 계산을 해도 해결 가능합니다.
수능에서 출제된 삼각함수 문제입니다. a와 b가 자연수이므로, 그 점을 이용해 b의 값을 먼저 구합니다.
그리고 주기를 이용해 a의 값을 구하면 해결할 수 있습니다.
9월과 수능에서 출제된 속도 문제입니다. 쉽게 출제되었어서, 똑같이 쉽게 출제했습니다.
적분하고 인수 분해 하시면 쉽게 해결 가능합니다.
9월과 수능에서 출제된 수열 문제는 모두 새로운 수열을 정의했지만, 이 문제는 등차수열의 틀을 갖추도록 했습니다.
an의 일반항을 구하고 (나)의 특수 조건을 바탕으로 bn을 추론하면 해결 가능합니다.
6월, 9월과 수능에서 출제된 함수의 넓이 문제입니다. 9월 문제와 비슷한 느낌이 있습니다.
하지만, 조금 다르게 이차 함수의 특징을 이용하는 문제를 만들어 보았습니다. 한 번의 정적분으로 해결 가능합니다.
수능에서 출제된 도형 문제입니다. 수능에서 계산을 어느 정도 요구했었다는 제 기억을 바탕으로 만들었습니다.
사인 법칙과 코사인 법칙 각각 2번 이용하면 해결이 가능합니다.
6월, 9월과 수능에서 출제된 함수 추론 문제입니다. 수능과 비슷하게 함수의 개형을 찾는 문제로 만들었습니다.
실수 k의 범위를 나누어 조건에 맞는 함수를 추론하면 해결할 수 있습니다.
[단답형]
6월, 9월, 수능과 다르게 연속 단원에서 19번을 출제해 보았습니다. 문제의 난이도는 6월과 비슷하게 구상했습니다.
f(6)=6이라는 점을 이용해 f(x)를 구하고 x=5에서의 극한값과 함숫값이 같다는 점을 이용하면 해결 가능합니다.
수능에서 출제된 지수, 로그의 활용 문제입니다. 수능과 마찬가지로 계산이 조금 있는 문제로 만들어 보았습니다.
계산만 하면 풀 수 있지만, 원점을 이용하여 원점을 지나고 기울기가 직선 AB의 기울기와 같은 일차 함수를 구합니다.
그리고 점 A 또는 점 B와 그 직선 사이의 거리를 구하면 조금이나마 계산을 줄이고 해결 가능합니다.
6월, 9월과 수능에 꾸준히 출제되었던 함수 추론 문제입니다. 6월과 수능처럼 계산이 최대한 적도록 노력했습니다.
그 결과 계산을 하지 않고도 해결 가능한 문제를 사용하게 되었습니다.
ㄴ명제가 언뜻 보기에는 계산으로 풀어야 하는 것처럼 보이지만, 대우를 이용하면 계산 없이 쉽게 해결 가능합니다.
-> 함수 f(x)가 실수 전체의 집합에서 증가하지 않으면, 함수 g(x)도 실수 전체의 집합에서 증가하지 않는다.
6월, 9월과 수능에서 꾸준히 출제되었던 수열 문제입니다. 모든 수열 문제가 헷갈리게 출제된 점을 반영했습니다.
위 식이 중근을 가지는 경우와 그렇지 않은 경우를 바탕으로 하여 추론하면 해결 가능합니다.
의도적으로 역추론을 하기 싫어지도록 a6을 분수로 제공했습니다. a1부터 차근차근 추론 해보시기 바랍니다.
조금 있으면 07년생 여러분의 수험 생활이 시작됩니다.
무슨 말을 하기보다는, 이런 식으로 실전 모의고사를 제공하며 공부를 돕는 것이 가장 큰 응원이라고 생각했습니다.
항상 응원하겠습니다! 화이팅입니다. :)
또한, 재수생분들도 응원합니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현역 수능 ㅈ망-> 낮은 지거국 다니다가 반수로 인하대 입학-> 입학했을 때부터...
-
부엉이 잘가요… 0
응원했어요.. 행복하길…
-
그럼 되게 신기할 듯
-
ㅋㅋ 7
낼도 그냥 카페인 악깡버?
-
얼버기 4
사실 얼버잠
-
근데 난 새벽에만 깨어있다 ?
-
이젠진짜잔다 2
-
잘자라 15
좀자라
-
개 찝찝하겠네. 꼭 아이스크림을 비치하도록
-
무지 5
개같다
-
기분좋게 자러갑니다. 다들 안녕히 주무시길
-
집에서 하니까 생각이 많아지고 생각이 많아지니까 공부가 안되고 공부가 안되니까...
-
버스 안에서 는 2
웹툰인디
-
그니까 와서 사줘
-
재밌었다 18
다시 현생으로
-
자자 13
자자
-
다르다고 1
보고있나
-
밸런스 조절을 위해 오르비를 계속 하겟습니다
-
진짜 모름
-
인초상 탈릅 예상 반응 13
.
-
다 어디갓니
-
아오 물2평
-
사탐으로 가버렸 뉴비만 받음
-
집에서 집중이 하나도 안됨
-
헬스터디 2
근데 헬스터디 국어는 왜 어떻게 공부하는지 안알려주냐 짜치게
-
사탐런 ㄱㄱ? 43
ㄱㄱ?
-
옯스타 1
1년전에 계정 잃어버림 흑흑
-
밝지는 않은듯
-
옯스타 맞팔해요 1
댓에 아이디 남겨주심 팔 하러 갈게용 *゜ (\ (\ c(⌒(_*´ㅅ`)_ 쪽지도 ㄱㄴ
-
덕코는 어케얻고 어케주고 어케쓰는거임…? 뭔지 모르겠어요 현질해여하나
-
오오 비애! 너의 불사조 나의 눈물이여!
-
ㅇㅈ 14
휴우우
-
레전드썰 개많은데 풀면 고소먹을까봐 못 풀음
-
똥마려워 6
참아봄
-
많이 바뀌었더라 그리고 같은 동 살던 친구 있었는데 까먹고 살았었네 옛날 기억 많이 사라짐
-
물리 12
7모 47 9모 50 10모 47 하고 수능 3등급으로 박음 ㅋ.ㅋ 수능은 44
-
내신기간에 안쉬고 정시파이터 위한 특강 함. 심지어 내신휴강기강도 가장 쨟은 2주...
-
고3 수학 쎈 2
이번 3모 51점 4등급 받았는데 쎈 c단계만 풀어도 되나요 4점위주로 다틀리는거 같은데
-
가끔 눈이 안떠지는 게 너무나도 스트레스임
-
오늘도 오르비를 한번 더 알아갑니다
-
이미지? 궁금해요 넵
-
잘자요 8
-
쓸 글이 없네 3
ㅈ됐다
-
방법을 바꾸니까 정답률이 확 좋아졋는데 생각해보니까 이게 내가 원래 글을 ㅈㄴ...
-
효신이형 중간에 눈까뒤집고 흰자보여서 노래에 감상이 잘안되요 0
심상이 너무나도 잘보이는 청년
-
너무 안했나보다 오르비 33
거의다 모르겠네
-
사실 저번에 휴릅한다고 했을때 탈릅할려고 했긴 했음 8
근데 하기전에 갑자기 생각나서 찾아보니까 심찬우패스가 사라진다더라고 바로 취소하고...
-
자야겠다 1
현생탈출 ㅅㅅ
-
일단 우리 지역 근처 일반고는 다 수업때 자습해도 풀어주는 분위기. 물론 모학교...
정말 감사합니다 잘 풀게요

풀어주셔서 감사합니다감사합니다 (_ _)
저도 한번 풀어봐야겠어요
좋은 자료 감사합니다
풀어주셔서 감사합니다 :)
한번 풀어봤는데 문제퀄이 상당했어요
개인적으로 10번,15번,19번 같은 문제가 진짜 좋았던 것 같아요.
진짜 잘 풀어봤고 다음에도 좋은 문제 내주시길 기대할게요

감사합니다. 앞으로도 좋은 문제 공유 할 수 있도록 노력하겠습니다!5번에 답 3인데 1로 써져있네요

맞네용 감사합니다