수2 문제 (2000덕)
게시글 주소: https://orbi.kr/00071825955

첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옯붕이들 저는 믿으셈 4 1
문법(주로 국어사) 하나만큼은 자신 있음뇨...
-
시대대치랑 시대기숙 고민이면 5 0
시대대치 합격 문자 왔는데 기숙이랑 고민 중이었음 기숙 모집요강 2/10에 나오는데...
-
사탐은 왜 마더텅이 국룰임? 6 0
예전부터 궁금했음 수학은 자이 많이 보이는데 국어랑 특히 사탐은 마더텅 비율이 압도적이던데
-
단어장 바꿔야하나요 4 0
해커스 수능완성 쓰고있는데 다들 워마 수능2000이 더 좋다길래 ㅠ
-
경북대 자전 2 0
경북대 통합자전 65명 뽑는데 예비 29번인데 가능할까요.. 매년 충원율 50퍼 이상 돌았습니다
-
오야스미 1 0
네루!
-
동국대 정도 되면 삼수생도 있나요… 12 0
나 슬퍼…
-
중학교때 잘하던 애들 재수 하는거 보면 신기하네 6 0
기분이 묘하네요.. 나름 4대외고나 자사고?간 친구들이 재수하는거 보면 흠
-
무섭네 ㄷㄷ 0 2
-
근데 2509 코인채굴? 0 1
그 12번인가 추론선지는 눈알굴리기로 안되지않음? 사실 이해해도 힘들거같긴함
-
솔직히 남지현 개념서랍은 시중 판매해도 잘나갈듯 4 1
약간 매운맛 쎈이고 기초 몇문제 빼면 단원별 유형별로 어삼쉬사 초반에 풀고...
-
여자어 테스트 0 0
아 신뢰도 없네
-
김범준T 광클성공 ㅠㅠ 0 0
태블릿으로 네이버시간 보고 폰으로 성공 ㅊㅊㅊㅊㅊ ㅠㅠ
궁금한 게 자작 아니면 먼가요
대학교재에 있는 거 아닐까요
Idea: f는 너무 빨리 증가한다. 즉, a_n이 수렴하고 f(a_n)이 발산하는 수열 a_n이 존재한다.
f’ > 0이므로 f는 증가하고, f가 증가하므로 f’도 증가한다. f’(0) = a라 할 때, x>0에서 f’(x) > a이므로 f(x) > ax이고, 따라서 f’(x) = f(f(x)) > af(x) > a^2x이며, 이에 따라 다시 f(x) > a^2/2*x이다. C = a^2/2라 두자.
f가 연속이므로 사잇값 정리와 Cx^2의 최댓값이 없다는 점에 의해, 실수 M > f(0)에 대해 항상 f(p) = M인 p>0이 있다. 임의의 M을 고정시키고, 수열 a_n을 다음과 같이 정의하자:
a_n = p + M/f(M) + 2M/f(2M)+ 4M/f(4M) + … + 2^(n-1)M/f(2^(n-1)M)
f(x) > Cx^2에서, 위 수열은 1/C*2^(n-1)의 합과의 비교판정에 의해 수렴한다.
한편, f(a_n) > M* 2^n 이다. f(p) = M에서 f(p+M/f(M)) > f(p) + M/f(M) * f’(p) = f(p) + M/f(M) * f(M) = 2*M이므로 n=1에서 성립하고, n=k에서 성립하면 f(a_(k+1)) = f(a_k+2^kM/f(2^kM)) > f(2^kM + 2^kM/f(2^kM))이고, 위와 같은 과정에 의해 이는 2^(k+1)M보다 크기 때문이다.
좀 돌아서 푼 것 같긴 한데, 보이는 것보다 어렵네요
사실 저 아이디어 한번쯤 써보고 싶었음
출처 및 풀이입니당
ㅇㅎ IMO 2번이군요
어려울 만 하네
이거 imo 아니에요
첫문단 막줄 a^2/2 * x^2에요
첫줄부터 이해가 살짝 안되는데 f가 연속함수인데 an이 수렴하고 f(an)이 발산할 수 있나요..?
안되니까 귀류법으로 모순이라는 뜻이었어요
이제 보니까 막줄을 너무 대충 적었네요
오타도 있고
f(a_(k+1))
= f(a_k+2^kM/f(2^kM)) (a_n의 정의)
> f(a_k) + 2^kM/f(2^kM) * f'(a_k) (f‘이 증가)
= f(a_k) + 2^kM/f(2^kM) * f(f(a_k)) (f에 대한 방정식)
> f(a_k) + 2^kM/f(2^kM) * f(2^kM) (귀납법 조건 f(a_k) > 2^kM + f는 증가)
= f(a_k) + 2^kM
>2*2^kM = M * 2^(k+1) (귀납법 조건)
2^kM은 그냥 M*2^k 쓰기 귀찮았던 거에요
이해되었습니다! 저 수열의 일반항을 잡는 발상이 되게 천재적인 발상이네요..!
혹시 문제 출처가 어딘가요?
원래 풀이가 궁금해서
lim x->-inf f(f(x)) > 0 이지만 lim x->-inf f'(x) = 0 이므로 모순?
좀 더 자세한 풀이가 있어야 할 듯 합니다ㅠ
해당 조건이 참이라고 가정했을 때
모.실.x에 대해 f'>0로 f가 순증가함수, 이때 f>0이므로 lim x->-inf f(x)=C (C는 0이상 실수)인데, f(0)>0이기 때문에 lim x->-inf f(f(x))는 C값에 상관없이 무조건 양수, 하지만 수렴을 위해 lim x->-inf f'(x)=0이기 때문에 식이 성립하지 않는다
라고 봤습니다