[칼럼] 삼.사차함수 비율관계 안외우고 푸는법!!
게시글 주소: https://orbi.kr/00071736822
안녕하세용
제가 공부법 올렸었는데 다들 안믿길래... 걍 스킬이나 올릴게여..ㅋㅋ
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
++다음 칼럼글은 아마 '역함수 미분법 일관되게 풀기'가 되겠습니다
아닐수도 있고
아 까먹었다 이거 부호는 그래프 보면 딱 봐도 +인지 -인지 알테니까 계수 -여도 걍 절댓값 붙여서 값만 계산하고 부호는 나중에 판단하는게 편해요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
"군대가 말 잘 들을 줄 알았다"…尹 몰락하게 한 '계엄 착각' 8
“망했다.” 12·3 비상계엄의 밤. 차마 믿기 어려운 계엄령 발동 소식을 접하고...
-
준우승 ㄱㄴ?
-
메인글 논란 4
8-9년전 오르비에서도 봤던 내용이라 새롭진 않네요
-
메인글 관련해서 4
제목 닉언 + 관계없는 게시물 댓글에서 닉언까지는 다들 자제하는게 어떨까 싶음 그게...
-
위험발언들 편집하는거 못참겠다
-
내주식 13
파산햇잔아 자산 타노스당햇어
-
흐음
-
일단 인강하시는 분은 아니고 러셀 출강하시던 분인데 이번에 인강 개인적으로...
-
에어팟을안들고옴 0
그래서 사문도 경제도 개념인강을 못듣는 대재난 빌생 어카지
-
아 월요일싫다 1
-
생윤 사문 하루 벼락치기 할건데 많이 나오는 주제나 사상가 없나…뭐 공부하지ㅊㅊ
-
오르비 닉네임 검색해도 왜 안나오지?
-
노래 진짜 너무 좋아요 들어보시는거 강추합니다
-
메가 어준규 vs 이투스 김현수 둘다 좋은 쌤 같아여(둘다 들어봄) 작년 난이도가...
-
10,11,15 끝 이제 호ㅓㄱ통해야지
-
없으면 대신 맛봄
-
저때는 비문하 헬 문학 좀 쉬웠고 제 기억상으론 22 헤겔 브레턴우즈 때...
-
20 21 둘다 그런 형태의 함수였넹
-
공간벡터 재밌었는데
-
섹 4
S
-
6평 전까지 대부분 볼수있을까요?
-
진짜 모르겠다 그냥 홀홀홀 홀짝짝 독립시행인데 왜 체감이 그랬을까
-
Falling in math 244번
-
돈은 다 모았는데 시간이 없네요 여행가느라 수업을 뺄 수도 없는 노릇이고 ㅠ 다들...
-
대체 어케 하는 것임??!!!!?? 좀 쉽게 설명해줄 사람 없냐….
-
‘윤석열 파면’ 아쉽기만 한 일본…“훌륭한 대통령이었는데” 5
헌법재판소가 윤석열 전 대통령 파면 결정을 내린 뒤 일본 언론들이 그의 재임 기간에...
-
이런거 쓰면 우승 가능한가
-
젖지대머리 8
젖지대머리
-
레벨 올랐네 2
아
-
오늘의 아침식사 8
아침기차 타기 전에 역에서 먹은 우동
-
그냥 모든분들이 다 예뻐보임
-
너무 어렵네
-
전공공부 1
갑자기 떠오른 생각인데 ‘공학’ 전반에 통하는 기초 학문이 있는지 어쩐지는 잘...
-
흠냐뇨이 왔저염>3< 16
모두들 에브리바디 하이
-
진짜 제가 알잘깔딱센 3머 국어 재밌게 해설해드림
-
볼에 여드름 남 3
방금 염증 주사 2만원짜리로 끔.살 하고 옴
-
현역이 n수생 칼럼을 어떻게 이김 수시제도 도입해서 현역만의 리그 만들어줘
-
잠을많이못자서 1
아침에굉장히힘들엇음 존나졸앗음
-
점심은 샐러드 2
네
-
언매 미적 생 지 작수 54455 —> 3모 31212 이번 3모 공통 21번 하나...
-
작년에 배웠던게 왜 기억이 안나냐...
-
서울이 법적으로 수도였던 적은 없음 노무현 때 대통령 방해하려고 성종때 경국대전 ㅇㅈㄹ 한거지
-
의사쌤 표정 어두워지면서 이명 때문에 모레 또 와야겠다고 하심.. ㅈ됐댜…
-
내 계좌 망함 2
2.2주석 입갤 ㅋㅋ
-
문과(자연과학 포함)는 인구의 2%면 충분하지 않음? 5
근데 왜 대학 모집 인원의 절반 이상이 문과임? 공학을 곁들이지 않은 자연과학과,...
-
특정안당하겠지
-
기출코드(수분감 진짜 작년에 다 외우다싶이 해서) 뉴런 시냅스 드릴 9평전까지 하고...
-
고3 3모 등급 기준으로
-
영어 풀때 해석 1
해석 하심? 저는 보통 그냥 영어로 받아들이긴 하는데...시다른분은 어떻게 하시는지 궁금함
첫번째 댓글의 주인공이 되어보세요.