미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071716950
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
굿닥터 미국 일본 터키 중국에서 리메이크된 초히트작 법률 드라마로 치면 이상한...
-
학벌로 최상위권이 아닌데 대체 인간이 맞나 싶은 능지를 가진 괴물들이 있음
-
ㅇㅇ
-
전투력 올라가긴한다 그래도 힘드렁...
-
N제들 수십개씩 사서 하루컷 며칠컷 인증하면서 N제 평가하시는 분들은 적백...
-
혹시 깜깜무소식이라고 생각하셨습니까? 당신의 그런 차별적인 생각을 청소년들이 듣고...
-
든든한 국밥같은 포지션이었는데..
-
혹시 흑흑이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 세상을 더욱 혼란스럽게...
-
서울이랑 수원 놀기에 어떤점에서 차이나요?
-
사실 뻥임뇨
-
오해원 : 노래 잘부름, 연예인임, 군대 안감, 요즘 뜨는 라이징스타 이해원 :...
-
미분 하지않고 그리기
-
너무 쉽지 않음? 맨뒤에 문제도 길어도 한 5분 고민하면 풀리던데
-
아 경제 ㄹㅇ 4
(대충 경제에 미친 몇몇 오르비언들을 낚기 위한 글)
-
전역기원 3일차 0
일병 1호봉이에요
-
미국 백악관이 현지시간 31일 트럼프 정부의 불법 이민 단속 실적을 소개하며 한국...
-
코스모스 3회독하러간다
-
연대 지능형 반도체 -시스템 반도체 아님(계약학과X) -학사 3년 (조기졸업...
-
으어 6
죽겠다
-
목시 성적순 0
이번에 성적순 3합 8이던데 본인은 3합 7임(영어2도 1로 쳐준다 해서)...
-
경제로 도망갈까
-
그냥 청년경찰 보다가 관심생격서 그러는데 군 제대하고 입학하면 어떻게됨? 원래...
-
경희대 합격생을 위한 노크선배 꿀팁 [경희대25][필수교양 소개 및 수강신청 꿀팁] 0
대학커뮤니티 노크에서 선발한 경희대 선배가 오르비에 있는 예비 경희대학생, 경희대...
-
최지욱 불도저 12
최지욱 불도저 친구가 유기해서 줬는데 시중n제랑 퀄 비비나요?
-
윤 대통령 측 석동현 "임기중의 대통령 끌어내리는게 오히려 내란" 1
윤석열 대통령에 대한 헌법재판소 탄핵심판 절차가 진행중인 가운데, 윤 대통령의...
-
군수 관련 질문 0
본인 05년생 재수중 중도포기 후 11월 입대 후 군수 시작. 1.원래 군대에서는...
-
그 외도 ㄱㅊ
-
생명1 한종철 0
한종철 자분기 들으려 하는데 작년이랑 비슷할까요?
-
수학 n제 추천좀요 11
예비고3이고 3모기준 3등급정도 노베라서 기출 여러번 돌리고 있는중입니다 낮2...
-
자신의 졷을 사방팔방 간수를 못하겠어서 변기커버 아래에 분비물을 묻히지나 말던가...
-
트럼프, 엔비디아 젠슨 황 긴급회동 “좋은 만남”...H20칩도 규제하나 1
대중국 AI·반도체 규제 정책 논의 딥시크 충격 이후 CEO와 첫 만남 대중국...
-
비문학 못하면 기출 덮고 책 읽는게 맞지 않을까요 11
기출 보면 허구한날 소재 비교/대조, 범주파악, 내용일치 안에서만 노는데 기출만...
-
대성 메가패스는 다 있음요 가계도 버리고 18개 맞추는 전략 쓰고 있었는데 시간...
-
수학황 들와바 24
이거 내가 잘못풀고있는거임?? 뭐지? 어디가 잘못돤거임?
-
팔굽혀펴기랑 윗몸일으키기 같은 기초 베이스는 좀 만들고 쇠질을 하라고!!! 이것도...
-
트럼프 "'달러 패권'에 도전하는 나라는 관세 얻어맞게 될 것"(종합) 1
도널드 트럼프 미국 대통령이 중국 러시아 중심으로 계속되는 ‘달러 패권’에 대한...
-
아 ㅅㅂ 0
기타 B줄 조율하다가 끊어짐
-
하 씨발
-
스블 수1,2 2
중에 뭐가 더 도움 많이 되셨나요?
-
개전의 정 2
改悛- 情 =뉘우침
-
시간 많고 공부 잘하는 심심한 개백수들 천지인 곳인데 여기만큼 질문하기 좋은 환경이...
-
쿠팡 알바 해보신 분들 16
후기점
-
앉아서 공부하면 등이 자주 뻐근해져서 일단은 등운동만을 하려는데 그래도 별문제는...
-
사실 저는 10년생임 23
고등학교 선행하려고 가입함
-
김젬마쌤 문학 0
좋나요...?? 교재비가 좀 비싸던데 문학이 많이 약한데 들어볼까요?
-
네
-
전한길 “尹 지지율 60% 넘을 것…비상계엄은 계몽령” 7
[꽃보다전한길 유튜브] [헤럴드경제=민성기 기자] 한국사 일타 강사 전한길씨가 부산...
-
신청 환영
-1/4?
틀렸나바...ㅠㅠ
혹시 답 뭔가유?
힌트좀요..
주어진 극한을 급수로 최대한 바꿔봅시다!
저 급수 형태가 어디서 많이 본 형태 같지 않나요?!
그러게요 적분하려고했는데 xlnx를 0부터 1까지 적분하지 못하겟어요
xlnx가 x=0에서 정의가 안되서 그런가요?
ㅜㅜ
그럴때는 x=0일때만 따로 정의을 하는 방법이 있습니다 :)
일단 이렇게하면 -1/4 나오네여
완벽합니다!
+f(x)를 x=0일때 0, x>0일때 xlnx로 두면
f(x) 적분하는데 아무 문제 없이 적분할 수 있습니다 :)
문제재밋습니다!
ln(a[n]) = {ln(1) + 2ln(2) + 3ln(3) + ... nln(n)} / 2n²
∫[1, n] xlnx dx = L[n]
L[n] ≤ ln(1) + 2ln(2) + 3ln(3) + ... nln(n) = ln(a[n])) ≤ L[n+1]
(y = xlnx는 x ≥ 1/e일 때 증가)
L[n]/(2n²) - ln(√n) ≤ ln(a[n]) - ln(√n) ≤ L[n+1]/(2n²√n) - ln(√n)
L[n] = [x²lnx - 1/2x²] (1, n) = n²ln(n) - 1/2n² + 1
L[n+1] = (n+1)²ln(n+1) - 1/2(n+1)² + 1
L[n]/(2n²) - ln(√n) = -1/4 + 1/(2n²)
L[n+1]/(2n²) - ln(√n) = (1+1/n)²ln(√(n+1)) - ln(√n) - 1/4 * (1+1/n)² + 1/(2n²)
lim(n→∞) {L[n]/(2n²) - ln(√n)} = lim(n→∞) {L[n+1]/(2n²) - ln(√n)} = -1/4
∴ lim(n→∞) {ln(a[n]) - ln(√n)} = -1/4
샌드위치 정리로 풀어봤습니다
와ㄷㄷㄷ이런 풀이도 있네요ㄷㄷㄷ
레전드고수다