미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071716950
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 2
길냥냥
-
저 저음 잘함 1
뻥임
-
트럼프, 캐나다·멕시코·중국에 고관세 행정명령… 4일부터 시행 3
도널드 트럼프 미국 대통령이 1일(현지시간) 캐나다·멕시코·중국에 고율 관세를...
-
2022 개정 한번 사봐야될것같은데
-
고등학교 진학률이요
-
당연히 아니겟지 흐흐
-
애깅이 일어나또 3
아웅 졸려
-
이겼잖아 근데
-
**생2를 제외한 모든 과목을 집모2등급이상 받아봄 물1 장점: 노력하면 할수록...
-
화작도 2
많이 어렵게 나올 때가 잇나
-
사문 개념서 2
개념서 추천해주세요… 자이스토리나 마더텅으로 개념 잡는 건 좀 어렵나요?ㅜㅜ
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 2
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
됐으면 좋겠는데 불안하네요.. 진학사 기준 제작년은 90등 작년은 75등까지...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 질문받으려고 들어간건 아니었는데
-
일주일이 수업일 기준인가요 복영 들어온날 기준인가요
-
점근선이랑 일차함수만 있으면 만들 수 있을거 같은데 변형이 용이할듯
-
일본 여행도 가고 중국 상하이도 가고 토익 900점 이상도 달성해보고 수능도 재미로...
-
역으로 독이되는듯 문학은 행동영역 정해두고 거기서만 놀면서 탁탁 긋는데 이 스타일로...
-1/4?
틀렸나바...ㅠㅠ
혹시 답 뭔가유?
힌트좀요..
주어진 극한을 급수로 최대한 바꿔봅시다!

막혓다저 급수 형태가 어디서 많이 본 형태 같지 않나요?!
그러게요 적분하려고했는데 xlnx를 0부터 1까지 적분하지 못하겟어요
xlnx가 x=0에서 정의가 안되서 그런가요?

넹..ㅜㅜ
그럴때는 x=0일때만 따로 정의을 하는 방법이 있습니다 :)
일단 이렇게하면 -1/4 나오네여
완벽합니다!
+f(x)를 x=0일때 0, x>0일때 xlnx로 두면
f(x) 적분하는데 아무 문제 없이 적분할 수 있습니다 :)

n=1일때만 따로 계산해주고 n=2일때부터 극한취해서 구할 생각은 못해봤네요문제재밋습니다!
ln(a[n]) = {ln(1) + 2ln(2) + 3ln(3) + ... nln(n)} / 2n²
∫[1, n] xlnx dx = L[n]
L[n] ≤ ln(1) + 2ln(2) + 3ln(3) + ... nln(n) = ln(a[n])) ≤ L[n+1]
(y = xlnx는 x ≥ 1/e일 때 증가)
L[n]/(2n²) - ln(√n) ≤ ln(a[n]) - ln(√n) ≤ L[n+1]/(2n²√n) - ln(√n)
L[n] = [x²lnx - 1/2x²] (1, n) = n²ln(n) - 1/2n² + 1
L[n+1] = (n+1)²ln(n+1) - 1/2(n+1)² + 1
L[n]/(2n²) - ln(√n) = -1/4 + 1/(2n²)
L[n+1]/(2n²) - ln(√n) = (1+1/n)²ln(√(n+1)) - ln(√n) - 1/4 * (1+1/n)² + 1/(2n²)
lim(n→∞) {L[n]/(2n²) - ln(√n)} = lim(n→∞) {L[n+1]/(2n²) - ln(√n)} = -1/4
∴ lim(n→∞) {ln(a[n]) - ln(√n)} = -1/4
샌드위치 정리로 풀어봤습니다
와ㄷㄷㄷ이런 풀이도 있네요ㄷㄷㄷ
레전드고수다