심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
귀여워
-
혹시 의대에서 의대반수할거면 그다음 내용궁금한뎅.
-
1명빼고
-
삼수할건데 탐구 바꿔야해서 근데 뭘해야할지모르겟어여 현역 물1 4등긎 생1 2등급...
-
일단 난 김종웅t 수강생은 아님 메가캐스트 종종 챙겨봐서 아는 정도였음 김종웅t...
-
얘들아 안녕~~
-
1.일찍 일어나고 일찍 자기 수능날에 맞춰서 생활리듬을 조절하세요 매일 아침 6시에...
-
배드즈가 뭐냐구요? 뭐게요
-
현우진만 빼고요…
-
그래서 모밴이뭐야 10
모바일밴스드라는데 친절하게알려줄 천사
-
술 좋아라는 글을 쓴 기억이 읎어
-
굿즈가 있다면 12
배드즈도 있나여?ㅋㅋㅋㅋ ㅎㅎ
-
시비걸었다고 쪽지로 욕박고 차단하는사람없음
-
1통이 되려면 10
어느정도 해야하나요??
-
생윤, 화학 이런식으로 과탐사탐 섞어서는 수능못보져??? 걍 궁금
-
내 기준 최강인강 강사 16
대 종 웅
-
인강 권용기쌤밖에 안들어봐서 도저히 감이 안와요,,, 25수능 백분위 85인데...
-
사실 에타 1년정지먹어서 글을 못써 ㅋㅋㅋㅋㅋㅋㅋ
-
야 코ㅋㅋㅋㅋ 걔 맞음
-
ㅈㄴ 남자답고 뇌섹남임 ㄹㅇㅋㅋ
-
해서 얻는게 없을텐데
-
물론 대학이 끝이 아닌건 알았지만 개인적으로는.. 근데 막상 들어와보니 여기서부턴...
-
수험생 시절 기준이니까 이의 있어도 이해 해 ㅎ 김기현 박석준 김종웅 강영찬 강윤구...
-
아이돌 굿즈..
-
로고스 인문논술 가격 대충 달에 얼마인가여,, 하…
-
팔길래
-
하루빨리 1
여자도 군대가는 세상이 왔음 좋겠다 군대가서 몇명 죽고 뉴스에 나오면 그때가서야...
-
제발 공도는 도형을 우선해서
-
얼버기 4
얼인가?X 버인가?X 기인가?X 뻥임뇨
-
고대 산업경영공학 정시로 가기 많이 빡센가? 사탐 두개 만점이어도 못 갈 정도?...
-
버튜버한테 10
200후원해도 식데도안해주던데 아이돌굿즈는 왜사는거임??
-
좀보기힘든애있네 6
-
시네마틱은 다 봤고 나무위키 문서 보고있음
-
작수 언매99고 올해는 피지컬 자체를 더 기르고 싶어서 지금 인강민철하다가 리트로...
-
난 놀랬던 게 9
대중에겐 인지도 없는 보이그룹이 돈 쓸어담는 거였음
-
연예인 힘들다 발언 10
관심빨라고 뻥치는거임 정치인과 연예인은 관심 = 권력
-
아마 제가 수능을 봤으면은 아무것도 안떠오르고 70점대 나왔을것 같은데 다시 보니까...
-
뭔진 얘기 못함
-
가장 먼저 성적 인증합니다. 전 글에서 썼던 그 성적표 사진 그대로긴 합니다.....
-
가슴이 웅장해진다 진짜
-
설마 제가 그동안 목록으로 110페이지가 넘을 정도의 글을 썼다는거에요?
-
그래도 학창시절에는 쟤 그래도 공부는 어느정도 해 이 쉴드때문에 개무시당하지는...
-
가끔이런생각해봄 7
어쩌면 나는 태어나서부터 죽을때까지 그냥 뇌에서 보여주고 있는 일종의 1인칭 3d...
-
인터넷에서 찾아보면 풀이 해주는 거 다 인도 형님들임? 갈색 손 서툰 영어 억양
-
제가 친히 구매해드립니다
-
닌진 누나 4월에 보는거만 생각하면셔 살고 있음
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요