심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
팔찌 이뻐요 ? 0
사고싶은데
-
입시를 살아가는 중이 되었다. 한이 필기구를 맺혔다. 그러므로 가방에 책장이...
-
눈 ㅇㅈ 2트 2
-
내 ㅇㅈ글 반응 1
충격먹고 조회수에 비해 반응이 없음
-
오늘 폼 미쳤는데
-
화가난다 0
문제가 안풀림
-
(제목)이별 1
너무 많은 사람들에게 신세를 졌다.나로 말미암아 여러 사람이 받은 고통이 너무...
-
ㅇㅈ메타에 1
짬내서 써본 자작시가 묻히네
-
아랍이라기엔 애매하고 그냥 청순해지고싶음
-
보통 메가스터디 같은대는 중경외시 고집하는데 중시경건으로 묶네 많이 올라오긴했나봄
-
이게 바로 3
심찬우 쌤이 말씀해주신 인식의 변화 ㄷㄷ 과학기술이 발달함에 따라 사람들의 생각이 변화함
-
진짜뭐지
-
님아..
-
세다이햄 왜 여장하고 방송하냐
-
훈훈한 애들 실시간으로 팔로우중이니 뒤를 조심해라ㅇ
-
님들한테만 알려주는 비밀임
-
공부와 일 외, 전부
-
꽃잎이 흩날린다 꽃향기가 퍼진다 폭풍우가 몰아친다 장맛비가 쏟아진다 낙엽이 우수수...
-
하..
-
시를 읽어도 2
뭐라는 건지 못알아먹겠고 공감도 안되지만 대충 멋있는 것 같은 그러나 끼지는 못하는...
-
거기 지나가는 아이야 부디 내 이야기를 들어주렴 어릴적 나는 전쟁터애서 살아왔었다...
-
지금 고2 중간고사가 거의 끝나가서 중간 끝나면 중간 범위 인강 커리큘럼으로...
-
연의 고의 그 다음은?
-
본인 ㅇㅈ 반응 8
그정돈가 진짜 슬프네…
-
ㅇㅇ
-
내년에 시도해본다 ㄹㅇ 다 구독하셈
-
지금 막 내신대비로 예문이랑 보기, 지문형문법 존나 외우고 분석중인데 이거...
-
펑
-
현역 3모 0
화작미적사문생명 34232이고 내신은 3점 중후반인데 광운대 공대가려면 정시해서 더...
-
거울보면 자괴감 드네
-
지금 옮기까 마까 고민중이예요, 언매 미적 사문하는 이과고 생윤런도 예정중. 1....
-
색수차 8
.
-
이렇게 좋은 칼럼들이 있는데 아직도 안 보셨다고요?! 231109 맛있게 푸는법...
-
ㅇㅈ 8
숭배하기
-
과거와 현재를 잇는 매개체임
-
화요비 눈만 인증 16
-
ㅇㅈ 6
폰 끄고 자라. 내일 공부해야지
-
야이 기요마 5
ㅇㅈ하는 오르비언 야이 기요마
-
삼수했을 때 새벽 2시에 총무 다음으로 마지막으로 독서실에서 나와 자주 갔었던 집...
-
곧 결혼함
-
강민철 문학 독서 듣는 친군데 하루에 4시간씩 꾸준히 두달간 하니까 비문학은 거의...
-
도와주세요ㅠ 국어 독서만 2시간 풀어서 17문제 중에 9게 틀렸는데요 0
2025 수능 독서만 풀어서 9개 틀렸는데 글 자체 읽는법을 배워야될거같아요 그러면...
-
설마방탄이올까햇는데갈걸..
-
학교에서 질문글올리려고 오르비들어갔다가 갑자기 친구가 내 패드화면 봐서;;;;; 특정제대로당함뇨이
-
다시 보니까 한칸차 등차구.. 합 17 등차 그래프 그리면 답 빠르게 구할 수...
-
세계지리 0
과탐의 경우 개념은 이해정도만 하면되고 문제 푸는거에 쏟는 식이었다면 세지는 사실...
-
오르비에 인증함..
-
보고 또 보고지자기 14
.
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요