존재성을 이용한 멋진 증명.
게시글 주소: https://orbi.kr/00071638814
1. Isogonal conjugate.
삼각형 ABC와 점 P가 있다.
∠BAP=∠QAC, ∠ACP=∠QCB, ∠ABP=∠QBC.가 되게하는 점 Q를 점 P의 ABC에 대한 Isogonal conjugate라 한다.
(사실 좀 다른데 대충 넘어가자)
2. Isogonal conjugate의 존재성
Pf) 각-Ceva 정리에 의해 Isogonal conjugate는 항상 존재한다. (넘어가기)
3. Pascal's Theorem 증명 (먼 정린지는 Pole&Polar 글에 잇음)
여기서 삼각형 HAD와 HCF를 보면 서로 닮음임을 알 수 있다. (원주각)
또 원주각을 보면 ∠GAH=∠KCF, ∠GDH=∠KFC임을 알 수 잇다.
즉, 두 삼각형을 포개어놓았을 때 G의 사상과 K의 사상은 Isogonal conjugate가 된다.
=> ∠AHG=∠FHK이고, G,H,K는 일직선이다.
사진은 위키피디아임
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울대 주변에 많으면 카이스트가 엄청 신기하고 똑똑해보이는 그런 느낌 너무 과하게는...
-
한 번도 의심한 적 없었죠 몰랐어요 난 내가 개저능아라는 것을 그래도 괜찮아 난 2수하니까
-
줄은거같음
-
오르비에 3.9프로가 있는거 같음 성적 구라거나 진짜인건데 아니 뭐지
-
새벽에 좋아하는 도시락 사고 정말 행복했던거 보면
-
11시에 온다며 0
대체 언제 오는 거임
-
그거 재종전용임 아님 단과에도 뿌림?
-
월례도 계산실수로 다날리고 오늘 풀어본 3모도 계산실수 ㅈㄴ 많고 브릿지도 계산실수...
-
커뮤엔 주로 잘본 사람들이 기만 하려고 글씀 못본애들은 글 안쓰기때문에 상대적으로...
-
영어는 7
시간 박으면 오르긴 함?
-
국어 1 수학 1 탐구 2 이상 이라는 성적을 받고싶음
-
못 볼 수가 없는데.. 김범준 갤러리에도 내 글 올라가잇던대 ㅋㅋㅋ 선생님 많이...
-
qNv 20 15
qNv 후기 올라감요
-
울고 잇음
-
과탐 추천좀 1
이번 3모 국어 2컷 수학 92 영어3인데 무조건 공대라서 걍 일단 과탐해보려는데...
-
혹시 내일은 뭐해~
-
근데 걍 얼굴 좀 못났어도 주어진 상황에 적당히 만족하면서 사는 삶이 나을수도 있겠구나 싶어요
-
일쥬일만에 공부하기
-
좋나요? 이거 한번 훑고 카나토미 강의 다 올라오면 카나토미 하려는데
-
대성 합격예측에 3모 성적 넣었더니 국어 93점이 백분위 100나오는데 머죠
-
김동욱 심찬우
-
뭐 수능 공부는 5
6평 이후 부터 진짜니까 지금은 국어 수학 두 개만 하라고 조언 해주고 싶네요...
-
사설에서 좀만 낯설게 나와도 정신못차려요 기출은 잘 봤어요
-
수학 풀 때만 딴 생각 나는 분 계신가요..? 제가 수학이 가장 약점인데 그래서...
-
현역정시한뱃 5
이건 팩트임뇨
-
작년에는 7월부터 오렌지 들었고 2506 : 77점 2509 : 91점 2511 :...
-
수학공통 엔제 드릴5.6 드릴드2만 해도 되려나여 좀 부족한가요?? 아님 엔제...
-
정부는 필수의료하라고 돈 분명히 줬는데 개원가위주로 돌아가는 하지정맥류,...
-
김승리t 어떰? 11
강기분 완강했는데 나랑 좀 안 맞는거 같음 물론 얻어가는건 굉장히 많았지만 그...
-
크로녹스 베이직 기출 한번 1회독인데 기출은 좀 기억날 것 같고 개념 아직 완벽하지...
-
민지프사보단 1
댕댕이 프사가 낫다
-
작년 미적 1컷 73 제작년 미적 1컷 71 머리깨지는 경험 가능 난 상관없음 ㅋㅋ
-
그냥 요즘 현실이든 어디든 좀 많이 느끼네요..
-
그런 눈으로 2
바라보면 부끄럽죠
-
1000덕 5명 12
오르비 활발해서 기분 좋음 ㅎㅎ
-
평가원에서요
-
좋은날이 오면 웃고 그런거지
-
현역 정시 0
에휴
-
고2 10모 13553 화1지1 고3 3모 13213 언매미적생윤사문 1.생윤사문은...
-
비유전 유전 각각 난도 어느정도였는지 궁금해영
-
일단 나부터 ㅋㅋㅋ
-
2002년 한국시리즈 3차전이 11월 6일에 열렸는데, 이날이 마침 수능 당일이기도...
-
외대하고 공대는 교집합이 되기에 부적절한 느낌이 듬.
-
카나토미 1
미적 언제 나옴요?
-
나같은 빡대가리도 4에서 2로 만들어줌
-
아름..답진 않지만~
-
확실히 메타가 바뀌긴 한 듯 도구 정리 --> 문제해석능력 으로 메타가 바뀐 듯...
-
사탐런유행인가요 3
메이저권에서도 유효하나요?
-
왜 졸리냐? 2
당연함 잘시간임
-
대학교수하고싶다 2
교수가 멋있어보임
으아앙
발전된가독성추
이거 오늘 뭐시기 말한 그거구나
뜬금포로 말한거
으악
사상이뭐임
포개어놧을 때, 그 결과
그리고 두 삼각형이 어떤 삼각형임?
HAD,HCF
와오
이걸로 파스칼
어캐 증명하는거임
나 바보라 모르겟어
G,H,K가 일직선이라는게 Pascal 정리임.
근데 ∠AHG=∠FHK (맞꼭지각)으로 G,H,K가 일직선임이 증명된 것임.
아니 GHK가 일직선인건 알겟는데
전글의 파스칼 정리랑
어캐 이어지는거임 대체
전글의 육각형ABCDEF가 조금 특이하게 생긴 경우가 이것임 (볼록육각형일 필요 X)
이게 아마 전글에서는 원주각이 아니라 내대각일 것임.
사실 Isogonal conjugate의 정의 자체가 저렇게 Standard한 각으로 표현이 안대서 좀 더 일반적인 Directed Angle이란걸 써야되는데, 그걸 스킵하다보니까 전 글이랑 상황이 달라진거일 듯.
한국말써라 미치갯네
아 더 일반적인 각은 아니네 쨋든;
우리가 평소에 쓰는 각은 mod 2pi라고 보면댐. 즉, a라는 각이랑 2pi+a라는 각이 같은 것임. 이게 Standard Angle이고,
Directed Angle은 각을 mod pi로 보는거임
아 나이해갔다
이거 걍 만나는 위치만 원 안인거구나
ㅇㅇㅇㅇ
전글도 현을 연장시킨게 만난거고
여기는 걍 현끼리 만난거네
똑같네 ㅇㅇ
난 전글에서 육각형 안에 저 모양을 만들어서
뭐 안에 직선이랑 밖에 직선이랑 평행하나
이러고 잇엇내
빠가엿내 아오
증명하니까 그사람생각남