[칼럼] 돌림힘 평형에 대한 접근(1편)
게시글 주소: https://orbi.kr/00071622839
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 시발 ㅈ됐다 진짜로 어카냐 나 반수해야하나
-
이대 교대 외대 여기 세개는 수시 선호도 높고 정시 선호도는 낮은듯 먼가 신기함
-
안되겟지
-
나보다 점수높은사람 오셈
-
무한n수드가자 0
학교통 개심해서 못견디겠음
-
지금 분위기랑 차원이 다른가요 뭐가 많이 어두운 느낌인거 같네요 다들 말하시는거 보니
-
파동끄읕 1
이제 전반사!
-
오야스미 7
코낸코내
-
진짠데.
-
내신 생명 1
서술형이 50%던데 그냥 달달 외워야 하려나요..?
-
한종철쌤 철두철미로 개념 돌렸는데 유전때문에 홍준용쌤 커리 탈려고합니다.. 개념서...
-
취미가 꽃꽂이라 하면 어떨 것 같나요?
-
미적분 빼고 하등 쓸데 없음 화학 물리 선택자 일반물리 일반화학 정도
-
메인 점령이야~ 0
다 합쳐서 좋아요 450개!!!
-
셔츠가 배꼽주변이 갈색이 되서 배꼽에서 피랑 진물나는거 확인함... ㅅㅂ 이제 감기...
-
낼 부모님 본다 0
히히히
-
한양대생들인줄 ㄷㄷ 과잠이 똑같네
-
베이지 후드에 청바지 입어도 됨??
-
아파서 시험공부 못하는게 힘들다고 하니깐 돌아오는 말이 애낳는게 더 힘들다는거라니…
-
라온힐조 얘임?? 13
재르비한거임?
-
이거 진짜임요? 신검키 174.2가 중앙값인가 평균값으로 알아서 왠지 충분히...
-
설대 의류가 설대내에선 낮은과인걸로 아는데 대충 백분위 어느정도 나와야 하나욤 1도몰라서
-
질문 받아요 0
서울대 학부 다니고 있고 전공은 AI입니다 (주전공 전컴, 제2전공 수리통계)...
-
노베에게 점심은 사치다
-
아직도 서울 ㅡㅡ
-
plz
-
손
-
리젠이 멈췄다 2
-
11시 22분.
-
근데 이제 좀 일감이 많아서 피곤해짐 =_=.... 그래도 좋아하는 일과 공부를 할...
-
반으로 갈라져서 시네
-
50점 맞으면 되는 거 아닌가?
-
주변에 몸매 상당한 친구 있으면 저런 애랑 자보고 싶다거나 만지고싶다거나 벗겨보고...
-
기술적취침 0
-
현우진쌤 카르텔 얘기한거때문에 못쓰겠다.. 리바이벌 제본할까 생각했는데 중고나라가서 찾아야겠다
-
사관 86점, 경찰 87점 사관은 뭔가 안어려운 느낌이였는데 4개나 나가고 경찰대는...
-
물리 고정에 화생지중 뭐할지 모르겠노 화학은 일단 ㅂㅅ과목이니까 거르고 생명 아니면...
-
학벌은 1
중경외시가 컷인거 같아
-
소주 7병 3
맥주 1.6L ㅎ
-
고3들 3모 보고 충격먹엇나봐
-
아..
-
중국이 연예계 문화계 정치계 다 침투해서 집어삼키기 직전인거면 바이든이나 트럼프는...
-
대체뭐지
-
과외생을 위한 필기노트 10
교재에 개드립치는걸 좋아하는편
-
아쉽네 ㅠㅠ
-
ㄱㄱ
-
있음? 진지함.
물2 재밌겠다
현장에서 풀맞한 문제들이...