극한 상쇄 풀이는 오류가 아닙니다
게시글 주소: https://orbi.kr/00071570408

h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좌측 대각선과 우측 원호의 길이가 같으므로 이동거리와 평균속력이 모두 같다는 결론을...
-
그래 스펙 구경 좀 해볼까 어? 시발 눈에 보이 는건 온통 기만충 이럴순 없어 슬슬...
-
ㅠ
-
아니면 맞팔끊은건가
-
잔다 2
갓생을 위해
-
그래도 한 번쯤은 오마카세나 고급 일식집 이런 데 가 보고 싶음
-
일 하고 더 놀러 다니고 하는듯 젊음을 낭비하기 싫기도 하고 돈 쓰면서 노는걸...
-
오르비 안녕히주무세요 11
해뜨고 봐요
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 좋아요 구걸"좋아요 알림이 폭탄으로...
-
공벡해보쉴 19
난이도 상 둘중하나 풀면 2만덕
-
어딘가 결핍이 있는듯 그게 마냥 나쁘다는 뜻은 아니지만
-
2시간동안 풀면 800:1의 주인공은 당신
-
전문적인 건 아니고 재미로 3월초에 넣은 거 됐으면
-
난이도: 8/10 Y좌표로 유사기출 180921(가) 난이도:8.5/10 위의 사설...
-
근데 나한테 천덕 줘야함 선착순 천덕 주는 사람 1명 받음
-
학교에서 강제로 영화보러 가는데 재밌으면 보고 재미없으면 잘거임
-
옯뉴비다링 6
-
소아비만은 진짜 안됨 왜 안되냐고는 묻지마..
-
나는 아나운서 개그맨도 보이는거 보니까 ai기준에서도 하타치라고 인식한 듯ㅋㅋ
-
시발
-
제주도 특 4
공기"만" 좋음
-
셀럽미 ㅇㅈ 12
이제 슬슬 자야지
-
수능미적 25나 26번에 슬쩍 내면 미붕이들 머가리 터질까 아니면 잘 대처할까 뭔가...
-
어떻게 생각함
-
왜 안자요 0
-
잘거야 2
-
진짜 ㅈㄴ 이쁘네 짤 저장 ㅈㄴ 해야겠다
-
나는 서울살지만 4
서울 새끼는 아냐 밥도 굶어 봤지만 어두운 길로는 안다녀~
-
루비기여워 8
아이 out. 루비 in.
-
정신병이야 이거..
-
ㅈㄴ 아깝게 치킨 목이 개맛도리인데
-
6시 기상 목표 1
-
노래추천하나할게
-
셀럽미 ㅇㅈ 7
Ai고맙노
-
우리는 모두 친구/노롱노롱노로로/최소 노짱스타잏/질풍운지
-
잇올끝나고집오면 그런생각이 잘 안나더라
-
내 자아를 잃어버린 듯한 공허한 기분이였어 나라는 사람을 뭐라고 정의해야 할지 모르겠었어
-
생윤 사탐런 3
작년에 사문 사탐런햇을땐 꽤 재밌고 공부 별로 안해도 수능때 1이 나왔어서 사탐이랑...
-
인제대 백병원이 2
이 백병원이었구나 방금알았음
-
논술도 양극화임 1
수능도 정시 의대랑 정시 일반과랑 난이도 차이 점점 심해지듯 의대논술이랑...
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.