극한 상쇄 풀이는 오류가 아닙니다
게시글 주소: https://orbi.kr/00071570408

h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아오르비재밋다 2
아 오르비 해야지 흐 재밋다 흐 재밋다 서바 다운링크 차자따!!!!...
-
불끄겟다니까 스탠드키고쳐함 1학년실험보고서얼마나걸린다고 여태안쓰고뭐함미친
-
지금 맞팔구하면 2
팔로워 느나.. 애기혀녀기 팔로우해주세요 ㅎㅎ
-
실기를 준비해볼까 15
수능 성적만 생각하면 24수능으로도 설체교 점수 남네 실기 준비하고 경찰대 대안으로 생각해볼까나
-
원하는 그림 그려줌 12
최대한 간단한걸로
-
좆됏네 1
내 돈 다 어디가노..
-
내..대가리를...깨겠다.. 라고 적혀있는데요 교수님?
-
국어 3모 89 6모 84 9모 92인데 25수능 독서 10틀 문학 1틀 언매 1틀...
-
오늘 탄핵심판....
-
주석님 2분 오실거같은데
-
이거 하고 잘꺼임
-
안할거긴한데
-
아니오늘목요일이구나 14
내일 토요일 아니네
-
김승리가 하지말래서 못하는중임...미리 스포 안해주나? 풀커리 탈거라서 말...
-
손글씨 ㅇㅈ) 3
선착순으로 추천받은거
-
으대<< 여기는 4
보통 성비는 어케됨? 그리고 예쁜 애들 많음? 애들 텐션이나 그런건 어떰? 다 공부...
-
아니면 그냥 먹나요?
-
앞자리 여자애 개귀여움 13
근데 고딩임 이런생각이드는내가싫다 숨 30분만 참을게~
-
와 나 고딩 때 2
저딴 옷 어케 입고 다녔노
-
키작고귀엽고하얗고슬랜더인 사람이랑 연애하고 싶다 나는 도대체 언제쯤 할 수 있을까
-
[수학 내신 관련] 학교별 내신 시험지 유형과 이에 따른 공부법 22
곧 중간고사 기간이 다가오기 때문에 이번에는 수학 내신 시험지의 다양한 유형을...
-
질문 받아요 13
서울대 학부 다니고 있고 전공은 AI입니다 (주전공 전컴, 제2전공 수리통계)...
-
ㅇㅋㅇㅋ
-
먼저 연락올 사람이 얼마나 될까
-
김승리 올오카 들었는데 솔직히 잘모르겠고 오히려 감으로 푸는건 올오카 듣기전이랑...
-
확통 사탐으로 의대가 뚫리나요? 부산에 살아서 지역인재로 넣을건데 확통으로 의대를...
-
명대사 12
핸드와 보드, 그런 것들은 내가 어쩔 수 없는 것들이다. 선택권 없이 주어지는...
-
하 개현타오네 ㅗㅗㅗㅗㅗㅆㅂ
-
투표좀 2
뭐가 나음
-
오 9
오
-
2월 부터 림잇으로 랭윤 시작했고요 지금 사회계약론까지 진도 나갔는데 여러번 개념...
-
트러스를 풀다 이로운을 풀다
-
시대인재가 총 세 분한테 수업을 듣는데 아직 한 분 강의 밖에 안 들어보긴...
-
하이 26
헤이
-
kbs 담요감성 0
빅플릭스 나만 오글거리냐 그림체하며 개그 포인트가 딱 담요식 감성 존나 오글거려서...
-
정떡 4
우정떡치기
-
원하는거 댓으로
-
웹르비 장점 2
광고 안 볼 수 있음 삭제,차단 댓 안 볼 수 있음 레어 안 볼 수 있음 댓글 밑에...
-
로블 재밌다 3
으헤헤
-
설수의기원1일차 8
의문의 여목러 만나러 가자
-
이 흐름을 바꾸어보겠다!!!!!!!! 손글씨 써드릴게요 46
원하는 문장 적어보세요 영어도 한글도 일본어도 한자도 가능
-
하 설레,,,
-
그 다음에 누가 ㅇㅈ하노… 빨리 다른 사람 ㅇㅈ 해버ㅏ라
-
맞짱뜰새끼? 8
없군.
-
누구나. 자유롭게활동하는. 오루비. 괜히. 설래는맘. 품고.여사님들괴롭히지맙시다....
-
되게ㅐ 큼
-
ㅇㅈ 21
하관은 뭔가 말이 많길래 저번에 옯스타에 딱 한번 올려ㅅ음
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.