식개수와 미지수개수로 250615 예상으로 답내자
게시글 주소: https://orbi.kr/00071476548
안녕하세요. 오랜만입니다
오늘은 식개수 미지수개수로 과연 어디까지 예측이 가능한가?라는 부분을 다루려고 합니다.
25학년도 평가원 문항들 중에서 제일로 어려웠던 문제는 6평 15번이 뽑히는데요
오늘은 제가 시험장에서 (현장응시) 예상으로 답을 쉽게 구한 과정을 공유하려 합니다.
비주얼 부터 어려워 보이는데요.
우선 항상 미지수 개수를 카운팅 해줘야 합니다.
최고차항의 계수가 주어진 삼차함수이므로 미지수개수 3개에 추가로
상수 k 가 있으므로 저희가 구해야하는 미지수개수는 총 4개인겁니다.
그러면 식이 4개가 있으면 답이 나오겠죠?
그 다음 순서는 최종발문을 읽어야 합니다.
정확한 값을 묻는것이 아닌 최솟값을 묻고 있으므로
식 4개가 모두 필요하지 않고
식 3개와 부등식 1개가 필요한겁니다.
(가) 조건에서 미분가능하다 조건은 식 2개가 나옵니다
(연속+미가)
증가한다 조건은 우리에게 부등식 하나가 나옵니다.
따라서 지금 우리는 식 1개만 구해야 합니다.
그런데 (나) 조건에서 부등식 2개가 주어져있죠?
부등식 2개로 식 1개가 나와야함을 알고 있으면
나올 수 있는 방법이 부등식 2개가 경계가 걸치는 케이스로 예측이 가능합니다.
(예를 들면, x가 3이상, x가 3이하 이면 x=3 으로 등식 한개가 나옵니다)
따라서 당연하게도 부등식에서 겹칠 확률이 가장 높은 x=1에서 등식이 나올 것임을 예상 할 수 있습니다.
그러면 k=2일 확률이 제일 높겠죠?
이러한 사고과정은 시험장에서 매우 도움이 됩니다.
물론 어디까지나 예상하기! 입니다.
그러나 이렇게 제작자의 입장에서 과조건이 없다는 전제로 문제를 풀어나가시면
훨씬 도움이 되실 겁니다.
더 유용한 정보를 얻기 위해서 팔로우 해주시면 감사하겠습니다~
조발 연대 조기발표 고대
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화1 9평, 수능 1컷 50 (6평이 48이긴 한데 이건 표본이 아직 완전치 않아서...
-
김승리쌤 독서는 너무 만족하면서 듣고있는데 올오카 문학은 살짝 안맞는 느낌도 들고...
-
외대는 보아라 3
내일 조발 은근슬쩍 기대해볼게 믿는다
-
수학 미적 백분위 97임 참고로 아는 여자애 성적
-
저번주부터 현강 다니게 됐는데 페이스메이커 사서 병행하면 좋은가요?? 아니면 다른...
-
문제가 안풀리오
-
뭐 어케공부해야해요? 일단 수능영어 만년 75점언저리였는데 이번에 뽀록터져서...
-
살기 귀찮다 3
질린다 ㄹㅇ
-
너무 섹시할듯
-
외대 예비4번 0
프어 가능???
-
서강 너는 이제부터 앉아강이다. 서있을 자격이없다.
-
나 안가봐서 모르겠어 그거 시대강대보다 좋은거맞음?
-
솔직히 자신도 없고 내가 그렇게 말빨이 좋은 편이 아니라서.. 걍 수학문제 팔면서...
-
엄마가 과외썜으로 이쁜 연세대 의대쌤을 붙여주셨다 페이는 주1회2시간에 40쯤으로...
-
지거국 1
제가 만약 재수로 부산대나 경북대를 목표로하는데 그러면 미적 과탐을 해야하는걸까요
저런 풀이가 확실히 실전적이고 좋은거 같어요
댓글 감사합니다! 더 연구해서 좋은 게시물로 뵐게요
범준t가이렇게풀라고해서최대한따라해보는중인데오
아 김범준 샘도 이렇게 가르치시나요?
네 미지수 개수랑 정보 개수 파악하면서 풀이하시더라구요
아하 그렇군요 댓글 감사합니다
굉장하다
더 멋있는 내용으로 돌아오겠습니다!

멋진 글이네요댓글 감사합니다!
와 굉장히 논리적이네요 ㄷㄷ
그런데 현장에선 이렇게 풀면 끼워맞추는 느낌이라 다시 풀게 되더군요..그래도 글 잘 읽었습니다
끼워 맞추는 느낌이 있습니다만, 항상 식개수와 미지수개수를 매칭해가는 느낌이 저는 굉장히 중요한 태도라고 생각합니다. 결국 수학도 퍼즐의 일환이여서 제작자의 입장에서 위에서 내려다 보는 태도가 점수로 가장 직결이 되는 것 같더라고요. 댓글 감사합니다!
오 완전 유익해요 ㄷㄷ
느낌적으로 하던 걸 논리화 해둔 느낌
댓글 감사합니다! 더욱 명확한 명시화를 위해서 계속 노력하고 있습니다 ㅎ