오사카대 본고사 풀어볼 사람??
게시글 주소: https://orbi.kr/00071432285
이거 4번 회전체 문제가 진짜 재밌었는데 교과 외라 잘라왔음ㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 못참겠다 이 정벽 가시나 대구로 쏩니데이
-
윤석열 원영턴 2
-
NM? 너 재능있어 열심히 해
-
나의 말:ㅎㅇㅎㅇ ㅋㅋ 오르비에 어그로 글 쓰려고 하는데, 명문대 나와도 인생 망한...
-
이렇게 기분이 축 쳐질때 해결책이 있을까요..?
-
그래보임
-
어렵다...ㅋㅋ 운좋게 적백달성 특이사항은 미적 28,30이 엄청 쉽게 나왔다...
-
허수물화러 아시는분 계실려나
-
발상이 한 20년쯤 앞서 있음
-
이거 실친들은 다 아는 닉네임인데
-
돌아보니 몇 안되는 정시공부할 수 있는 시간이였는데..
-
반수할 예정인데 송파메가스터디 재종 가는게 나을까요 아님 잇올 다니면서 수학 단과...
-
스블 질문 0
스블 회독하는거로 기출 충분함?
-
ㅇㅇ 30분뒤부터
-
그것도 못하시나요! 훔쳐오고 싶은 사람 프로필에 들어가서…
-
페북 연애 특 6
오래가 헤어짐 언급ㄴ
-
Day2 4번 이거 정답 잘못나온거 맞죠?
-
과탐은 강사가 탐구 하나를 아예 먹어버리고 안락사시키는게 신기하네 10
사탐은 지리 말고는 그런거 없는 거 같은데
-
올1등급 6모 성적표를 보장하라
-
10년전) 2
야 나랑 사귈래(진짜임) 싫어 뭐래(진짜임) 아 만우절이잖아 ㅋㅋㅋ
-
몇년몇월 입대해서 26,27수능 중 어느거 보실건지 알 수 있을까요?? 11월에...
-
왜 제 주변 부모님 지인의사분들은 한경중이 그냥 그렇다고 하시는지 모르겠네요. 물론...
-
우리 집 와이파이 <-- JOAT
-
지금이라도 틀어야하나
-
오랜만에 너에게 편지를 써. 요즘 공부하느라 정신 없겠지만, 가끔은 내 생각도...
-
작년엔 커뮤 분위기가 현강 많이 가고 본인 주변에도 없었는데 올해 부쩍 는거같음
-
이미지t 미친개념이랑 한완수랑 같은포지션인가요? 병행하면 낭비일까요?
-
오르비 모고 있거나 한거 아니면 최대한 안들어올거... 재미는 있는데 아직도 커뮤...
-
12월에 다들 뱃지달고 에피 센츄달고 컴백하는데 전 레벨만 바뀐 상상을 해봤어요 끔찍하네요
-
솔직히 좀 쉬울거같은데 다른과목에 비해서 국어보다 진입장벽 낮을거같음 제일 재밌는...
-
수학 현강 두개 0
반수생이고 현재 뉴런하고 있습니다 작년에는 수능 안 봤고 재작년에 백분위 92습니다...
-
https://youtu.be/SwOUiV-yYyg?si=OEpPTGWASxMF2mfK 내스탈 이다
-
트러스 풀었다 4
수1 1회 수2 1회 미적 1-2회 일단 어삼쉬사느낌은 아닌거같은데.. 잘 모르겠음...
-
안가람t 대기 0
안가람t 대기 있나요? 서바시즌 때부터 들으려면 언제 대기 걸어야되나요?
-
솔직히 나 주제에 3모 23
15 21 맞췄으면 잘한거임 라고 오늘도 생각하는 낮2임
-
그래도 고1이라 지금 풀어보면 그때보단 훨씬 잘풀림 물론 고1 첫 시험치고 너무...
-
3등급 미적이인디 오늘부터 뉴런 시작햇아오 근데 만약 띰 하나에 문제 6개면 반절을...
-
이번 3모는 좀 그럼.. 퀄이 좋은것도 아니구
-
안녕하세요. 현월이에요. 벌써 3월이 끝났어요. 여러분의 지난 한 달은...
-
동강동강
-
아직도 읽을 게 산더미임 언제 다 읽지. 남들 책 사듯이 논문 다운만 미친 듯이...
-
시대인재 볼텍스 0
시대인재 볼텍스 손풀이 해설영상 아직 리클래스에 올라온건가요???????? 진짜...
-
. 아이고 07살려.....
-
저만 그론가요
-
오늘도 신나는 하르 즐거운 하르를 써야함.
-
서바시즌 개강일 1
생명 시대라이브로 서바시즌부터 듣고싶은데 언제부터 서바시즌인가요?
-
22 고1 3모가 댜충 1컷 76에 만점자 없었는데 이번엔 1컷 78이면 그정돈...
-
내신 언매하면 4
수능 언매는 효자과목이 되나요?
1번 진짜 개악질이네 ㅋㅋㅋㅋ
3번 자연수 아닌가요
n=0넣으면 되는거 아닌가요
아 다시 확인해보니 자연수네요
1번만 봤다
본고사 악명 높은거 치곤 생각보다 엄청 빡세지는 않네
저런것도 포맷 달달 암기하면 생각보다 할만하려나
요약.
1. n이 홀수면 2로 나누어 떨어짐
2. 3,5,7 중 하나 이상의 배수라면 넷 중 하나는 반드시 그 숫자로 나누어 떨어짐
3. 1,2의 경우를 배제한 모든 숫자의 경우에도 넷 중 1개는 반드시 3으로 떨어짐
대단하시네여;; 저는 정수론만 나오면 도망치는데ㅋㅋ
정석에서 3의 배수가 아닌 모든 수는 3k±1이라는거 보고 그거 제곱을 조이고 즐기면 반드시 3p+1이 된다는걸 보고나서부터 저거 어떻게 3의 배수로 안 되나? 하고 있습니다 ㅋㅋㅋㅋ
근데 숫자도 4개니 3의 배수 밀어야겠다 싶었는데 나오네요.
3,5,7과 서로소인 짝수를 6k+2 , 6k-2 로 표현할 수 있는 이유가 뭘까요.. 거기서 막힘
사실 5,7과는 상관없는 얘기긴 한데, 3의 배수가 아니라면, 모든 숫자는 3k±1로 쓸 수 있습니다.
3의 배수와 다음 3의 배수 사이 자연수는 2개이고 이 2개는 ±1로 커버가 됩니다.
예를들어, 4같은 경우, 4=3×1+1이고, 257 같은 경우 3×86-1로 쓸 수 있다는 것이죠.
그런데, 짝수이기에, 저 식에 2배를 친 6k±2로 두어도 모든 3의배수가 아닌 짝수를 표현할 수 있습니다.
그렇게 계산해서 n³...n⁷을 유도한거에요.
6k±2로 안 해도 3k±1로 해도 됩니다. 차라리 3k±1이 좀 더 맞을거에요.
개추..