[모든 참인 명제는 부정해도 무모순임 증명]
게시글 주소: https://orbi.kr/00071403001
증명이란
공리에서 결론을 도출하는것
공리가 참이면 결론이 참
대우
결론이 거짓이면 공리가 거짓
공리는 참이라는 증명이 없음
따라서 귀류법 증명이 없음
따라서 공리를 부정하면 무모순
이말은 공리가 거짓이면 무모순
결론이 거짓이면 공리가 거짓
공리가 거짓이면 무모순
따라서
결론을 부정하면 무모순
1. 공리를 부정하면 무모순
2. 결론을 부정하면 무모순
모든 참인 명제는 공리거나 결론이다
따라서
모든 참인 명제는 부정하면 무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 0
ㅈ같다 요즘 공부하는걸 떠나서 인생이 ㅈ 같다 아무것도 하기싫다
-
떼잉 요즘 Mz들은..
-
주변에 중경외시붙 홍익대 자전 예비 경북대붙 광운대 자전 예비 이런 사례들 꽤...
-
ㅈㄱㄴ 그시간에 알바 2일 하는게 나을까요? 제발 저에게 도움을 주세요 12학점...
-
이거 곰팡이 맞나ㅏ?
-
굿
-
6시간만해도 44점 나오는 경제하세요~
-
유튜브에서 방금 나옴…
-
수1 같음
-
얼버 2
잠
-
수1도 잘하는건 아닌데 수2를 너무 모담 수2공부량이 수1 넘엇는데 ㅜㅜ 수2 재능이 없다
-
그런 후드집업 이세상에 어디 없나...
-
현정훈T 합류 1
합류하려는데 지금 빨리 합류할까요 아니면 빨리 특특 끝내고 러쉬시즌부터 합류할까요?
-
기상 ㄷㄷ 0
시작..
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
이과가 문과 교차할때 한급간이상 대학레벨을 올릴 수 있다고 들었는데, 원리가...
-
시대인재국어숙제 0
황용일 윤지환샘숙제랑 월간승리랑 비슷할까요? 월간승리에는 기출 리트...
-
이걸로 오늘을 버틸 수 있을까 일단 아침 먹고 고민해봐야지
-
안녕하세요~^^ 4
-
써주시면 좋겠당
-
주인없는목소리
-
딱딱한 바닥, 밖에서 떠드는 소리, 코고는 소리...
-
추억상자라는말 4
정말 이쁜 것 같아요..
-
단 밤 샌 사람은 듣지 말 것 가사가 오해하기 쉬운거 같아서 멜로디는 좋아서 가사...
-
옮맘추하지마셈 4
나도 옮만추해봣늨에 만낫는데 상대방이 아리마 카나엿음 근데 다짜고짜 고백해서 할 수...
-
열등감의정의 2
자기삶의주관적중심성과객관적인보잘것없음이라는인식사이의갈등
-
일찍자면 재밌어보이는 메타를 맨날 놓치네
-
ㅇㅂㄱ 2
-
https://orbi.kr/00065917558/%EC%99%B8%EB%8C%80%...
-
얼버기 13
둥근 해가 떴.. 안떴네요
-
2025학년도 사관학교 영어 1차 시험 기출문제 6번 문장별 분석 0
2025학년도 사관학교 영어 1차 시험 기출문제 6번 해설 ( 선명하게 출력해서...
-
개념하면 좀더 맞출수있을거같은데
-
사탐런 질문 0
25 수능때 물지 백분위 90 98 받고 26 수능 사문 지구 응시하려고...
-
야간 편돌이 1
심심하구나
-
우우..
-
중형 화려한 버섯만 패
-
건강이 안좋아지면 안되니까 ㄹㅇ일찍잘거임ㄹㅇ 다음에 바로 시작 이따가 밤에 오후...
-
오지훈 이신혁 0
누구 들을까요 지구과학이 좀 간절해요 ㅠㅠ 6/9/수능 현역 4/3/2(94) 재수...
-
내일은 꼭 23시 취침해야지
-
가만히 있엇는데도 무릎에 엄청 멍들음 뭐야무서워요
-
컨텐츠관리자님 2
레어 환불제도 빨리 만들어주세용
-
기차지나간당 3
부지런행
-
레어화긴 2
크하하 근데 안보영..
-
잇나요..
-
아 짜증난다.. 0
아까 이상한 레어 사져서 사고싶은거 못 사….
-
나 잔다 ㅂㅂ
-
크아 6
크ㅜ
-
출근길에 방문열어봣다가 없어진거알면 뒤집어질거같아서 못가겟슨
-
야옹
제가 수학 전공자는 아니라 정확히는 모르겠는데, 참인 명제는 해당 공리들로부터 도출되기 때문에 공리를 부정해도 무모순이라는 것이 곧 참인 명제를 부정해도 무모순이라는 결론으로 이어진다는 건가요?
참인명제가 결론인 경우 결론이 거짓이면 공리가 거짓이고 공리가 거짓이면 무모순. 따라서 참인명제(결론)을 부정해도 무모순.
공리는 참이라는 증명이 없음
따라서 귀류법 증명이 없음
따라서 공리를 부정하면 무모순
참인명제는 공리거나 결론이기 때문에
참인명제를 부정하면 무모순
그렇다면 쿠쿠리님의 증명 또한 어떠한 공리계 상에서 이루어졌기 때문에 부정해도 무모순 아닌가요?
맞습니다
그렇다면 이 증명에 어떠한 의미가 있나요?
어허 감히 쿠쿠리님에게 이의를 제기하다니 불경한것!
모든 참인 명제를 부정해도 무모순이죠..
1+1=2를 부정해도 무모순이죠
감히 이의를 제기해서 죄송합니다 제가 죽을죄를
ㅋㅋㅋㅋㅋ