[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사러가긴너무 귀찮아
-
[속보] 尹측 "이재명·조국 구속 않던 판사들 현직 대통령 구속"…'시일야방성대곡' 입장문 발표 6
법원이 윤석열 대통령에 대한 구속영장을 발부한 가운데, 윤 대통령의 변호인단이...
-
애들이 설잡갈바엔 경대가서 반수한다는 마인드or아예 경대 목표로 공부하는 애들도...
-
연치나 경희치같은 상위권 치대에도 많나요
-
동일한 집합에서 동일한 개수의 원소를 순차적으로 뽑아내면->순서부여 동일한 개수x면...
-
진로 관련 질문 받아봅니다
-
수학영역 틀딱 기출 활용문제 굳이 풀어야 하나요,,, 요즘은 활용 거의 안나오지...
-
중국 매체, '尹 구속' 긴급타전…"한중, 더 가까워질지도" 3
[앵커] 중국 매체들도 윤석열 대통령에 대한 구속영장 발부와 윤 대통령 지지자들의...
-
22-23시즌수열느낌으로내주면안되나
-
검정치마콘서트 1
감
-
참고로 물1선택자임
-
취소표 계속 보다가 며칠만에 구함 ㅜ
-
오랜만에 안끊고 2시간째 보는중이에요
-
윤성훈 기출 뭐이리 비쌈 ㅅㅂ 사문 처음 하는데 그래도 좋음?
-
…
-
물리는 강민웅 5
강민웅
-
이거 진짠가요 그래프 생각만 해도 올라오는데 미적을 끌고 가야하나
-
나 자신에게 건네는 말
-
진짜 누굴봐도 안설레고 사귀고싶단생각 안드는데 주변에 다 사귀기 시작하니까 현타오고 외로움
-
센츄리온 2
내일 나오나요??????
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?
기하황 ㄱㅁㅁ
님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!
3
문제 좋네요
여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요